西藏绒布地区遥感异常提取及成矿预测研究
[Abstract]:The prediction of mineral deposits is a hot topic for scholars at home and abroad, among which the research on mineral resources exploration technology is the main research object. The geological information (geological structure) geophysical and geochemical information and remote sensing geology of the deposit and its surroundings form the basis of understanding the metallogenic law and the evaluation of resource potential. The exploration of mineral resources is the extraction and integration of abnormal information of many disciplines. The research focus of remote sensing prospecting is remote sensing alteration information extraction and visual interpretation of remote sensing structures. Based on the regional geological survey project of 10: 50 000 in the Xizang area, the study area is located in the Xizang area and belongs to the Tethys Himalayan tectonic belt, which is one of the favorable metallogenic belts in the Tibet region. The tectonic activity in the area is strong, forming good metallogenic geological conditions. It has been found that there are many kinds of lead, zinc, copper, antimony, iron and other non-metallic minerals, such as phosphorus, limestone and other non-metallic minerals and geothermal resources in the periphery of the study area, such as the Saragang antimony deposit, the Langkazi gold deposit, the Zaxikang lead-zinc polymetallic deposit and so on. However, due to traffic, humanities and other reasons, the exploration degree of ore deposits in the study area is low, so far only one limestone deposit has been found. By means of remote sensing geoscience analysis, this paper analyzes the regional geological data, remote sensing data and geochemical data of the area, and combines with the modern metallogenic prediction theory of predecessors, and analyses the comprehensive information superposition and analyzes the comprehensive information, and classifies the metallogenic areas into distant areas. The main contents and achievements of this thesis are as follows: (1) the Lansat 8 OLI data and ASTER remote sensing data are selected as the remote sensing data sources in the study area. The two kinds of remote sensing data are preprocessed, including radiometric calibration, FLASSH atmospheric correction, data fusion, image clipping and so on. (2) according to the characteristics of OLI and ASTER data, the OLI remote sensing data are combined into pseudocolor images in 7 / 5 / 2 bands. The ASTER remote sensing data of 6 ~ 3 ~ 1 band are combined to form a study map of the study area. According to the spectral characteristics of OLI remote sensing images, the resulting images are more precise than ASTER images. On the basis of synthetic pseudocolor images in the band of OLI 752, the study area is interpreted by the collected 1: 25 million geological map. Draw the boundaries of the strata. And by artificial visual interpretation, combining with the structural characteristics of the regional line ring, the interpretation of the area line ring is carried out, and the orientation of the result of the interpretation of the linear structure is obtained. The density and frequency were analyzed. (3) by studying the geological and spectral characteristics of remote sensing alteration information, using mask de-interference, principal component analysis (PCA) and band ratio were used to extract different levels of iron staining and hydroxyl groups in the study area. The mud and palliation alteration information are obtained, and the extracted graded alteration anomaly information is processed together to obtain the distribution map of the comprehensive alteration anomaly in the whole area. The density analysis of remote sensing alteration anomaly information is carried out, and the distribution law of alteration anomaly is obtained. (4) the distribution of magmatic rock, fault and fold is combined with the geological background of the study area. Based on ArcGIS platform, the line ring structure information, alteration anomaly information and chemical anomaly information collected from remote sensing image are synthesized, and the Badden metallogenic area and Songgang metallogenic area are delineated by superposition analysis. Gongza-Jade let metallogenic remote area, road-made ore-forming area, Xiongle ore-forming area, Bandele ore-forming area and Zipu ore-forming area. The delineation of the ore-forming area lays a certain foundation for the prospecting of this area in the future.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P627;P612
【参考文献】
相关期刊论文 前10条
1 李宗仁;张q;李晓民;李得林;马世斌;;遥感线性构造特征分析与找矿预测[J];遥感信息;2016年03期
2 张廷斌;唐菊兴;李志军;易桂花;别小娟;吴华;郭娜;张志;;西藏尕尔穷铜金矿多光谱遥感地质特征与外围找矿预测[J];国土资源遥感;2014年04期
3 徐俊龙;温兴平;余敏;李超;王军;张丽娟;周杨;乔旭;;基于地质统计学原理的会泽铅锌矿遥感线性构造解析[J];地质与勘探;2014年04期
4 别小娟;孙传敏;张廷斌;易桂花;郭娜;吴华;;玉龙斑岩铜矿带北段ASTER遥感蚀变信息提取与优选[J];中国矿业;2014年04期
5 钟江文;彭翼;;小秦岭地区遥感线性构造密集带与金矿关系分析及找矿预测[J];国土资源遥感;2014年02期
6 高海洋;何政伟;赵银兵;;基于ASTER数据的江拉昂宗铜多金属矿床矿化蚀变信息提取与分析[J];测绘与空间地理信息;2014年03期
7 吴志春;郭福生;刘林清;谢财富;姜勇彪;;基于TM/ETM影像的复合法遥感蚀变异常提取应用研究[J];地质与勘探;2013年03期
8 黄照强;江淼;;西藏冈底斯东段遥感构造解译及成矿靶区圈定[J];地质与勘探;2012年02期
9 闫仕娟;;大西洋中脊区线性构造解译及热液成矿关联[J];矿物学报;2011年S1期
10 陈勇敢;韩先菊;张慧玉;王美娟;汤媛媛;傅扬;常春郊;;基于混合像元分解提取多种类覆盖区遥感蚀变信息——以甘肃省岷县寨上金矿区为例[J];地质与勘探;2011年06期
相关会议论文 前3条
1 张海玲;王家林;许惠平;;遥感线性体的定量分析和成矿预测研究[A];中国地球物理学会第二十三届年会论文集[C];2007年
2 于志鸿;刘忠平;;对中国陆地线性构造与矿产关系的探讨[A];中国地质科学院矿床地质研究所文集(11)[C];1984年
3 张佩民;吴德文;张建国;杨自安;刘碧虹;肖文进;;遥感技术在地质找矿中的应用[A];全国国土资源与环境遥感应用技术研讨会论文集[C];2009年
相关博士学位论文 前7条
1 林楠;基于遥感地质与地球化学信息的成矿预测模型研究[D];吉林大学;2015年
2 邓辉;西南三江德钦—木里地区铜多金属遥感找矿信息研究[D];成都理工大学;2014年
3 张廷斌;斑岩铜矿遥感蚀变信息重现性与优选研究[D];西南交通大学;2013年
4 刘严松;冈底斯成矿带尼木—墨竹工卡地区斑岩铜矿成矿规律研究[D];成都理工大学;2011年
5 陈广洲;多源信息耦合的成矿预测新模型研究[D];合肥工业大学;2010年
6 周林立;云南普雄多光谱遥感矿化蚀变信息提取研究[D];中国地质大学;2010年
7 王瑞雪;云南澜沧老厂铅锌矿影像线—环结构矿床定位模式研究[D];昆明理工大学;2007年
相关硕士学位论文 前9条
1 解骁颖;西藏扎西康地区锌锑多金属矿产遥感蚀变异常信息提取与成矿预测[D];成都理工大学;2016年
2 杨绮丽;石棉—冕宁地区遥感异常提取及成矿预测研究[D];成都理工大学;2016年
3 胡滨;遥感技术在香格里拉—德格地区斑岩铜矿中的应用研究[D];成都理工大学;2015年
4 付文博;西藏玉龙地区斑岩型铜矿遥感信息提取研究[D];成都理工大学;2014年
5 翟伟林;西藏自治区尼木地区铜矿成矿信息遥感研究[D];成都理工大学;2012年
6 王乐;西藏尼雄地区遥感成矿信息提取与找矿远景分析[D];成都理工大学;2011年
7 徐争强;遥感技术在西藏隆子地区矿产资源勘查中的应用[D];成都理工大学;2009年
8 倪忠云;川西巴塘砂西地区遥感成矿信息提取[D];成都理工大学;2008年
9 张廷斌;西藏谢通门县铜金矿带遥感图像蚀变信息提取及多源数据融合在成矿预测中的应用[D];成都理工大学;2006年
,本文编号:2424925
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2424925.html