地质统计学在地层岩土参数分布规律研究中的应用
[Abstract]:With the deepening of the reform and opening-up, the real estate industry occupies an increasingly important position in the market economy, and has been widely concerned by the whole society for a long time. In recent years, the pace of urban construction has been accelerating, and the high-rise and super-high-rise buildings have become more and more, and the new building in the old city is also a joint pin. The development of construction industry has also led to the progress of engineering technology in the relevant fields, such as foundation survey, foundation pit engineering, underground engineering, foundation treatment and so on. It is the fundamental way to strengthen the steady progress of the project construction by strengthening the study of the factors of the uncertainty of the formation space and the deterministic factors. In the southeast coastal area of China's rich economy, the distribution of the spatial distribution of the formation soil is an important factor to restrict land planning and engineering construction, and the land use and economic development of the region are affected with the regional environment. In the regional scale, the systematic and scientific understanding of the spatial distribution characteristics and the influencing factors of the formation rock and soil parameters in the whole area of the study area is a strong guarantee for the smooth implementation of the project, and has an important guiding role on the macro-decision problem on the regional unit. In this paper, a typical sea-sea facies sedimentary formation is used as the research area. The purpose of this paper is to find out the overall variation of the main formation parameters in the current stage, to clarify its spatial variation and spatial distribution pattern, and to reveal the relationship between the rock-soil parameters and the related environmental factors at different scales. The geotechnical parameters of this paper are taken from the exploration report of 1 # ~ 22 # building in FuNing County, Jiangsu Province. The main research strata include the third layer of silty clay layer, including 43 exploration holes, and the 8th layer of silty clay layer, including 43 exploration holes, with the layer thickness of 4.0-5.3m, and the 9th layer of clay layer. There are 29 exploratory holes. The spatial variation characteristics, spatial numerical simulation and prediction of the rock and soil parameters are mainly studied by the methods of classical statistics (overall feature variation, variance comparison, mean analysis, etc.), geostatistics (variogram, Kriging space interpolation) and state space numerical simulation. The main results of the study are as follows: (1) The overall change level of the soil parameters in the study area is at a moderate and weak variation level in the region. The geological and statistical analysis shows that the rock-soil parameter liquid limit, the plastic limit and the liquid-liquid index of the silty clay layer are medium variation parameters, the block gold coefficient is less than 0.25, the formation parameters of the silty clay are medium-variation with the porosity ratio, the compression modulus and the block gold coefficient between 0.25 and 0.75; The rock-soil parameters of the clay-layer formation are medium-variant with compressive modulus, and the coefficient of gold in the X-direction and the Y-direction is between 0.25 and 0.75. The analysis of the variation function shows that the geotechnical parameters of the main formation have no significant anisotropy in the regional survey scale. (2) The spatial correlation of the formation rock and soil parameters is studied in this paper. There is a strong positive correlation between the water content of the silty clay formation and the pore ratio, the correlation coefficient is 0.9410, the compression coefficient and the compression modulus have a strong negative correlation, the correlation coefficient is 0.9450, the water content and the pore ratio, The parameter indexes such as the liquid index and the compression coefficient have good spatial corelation in different directions. The direction of X direction is close to 5.7 m, and the direction of the Y direction is close to 7.1m; the water content and the aperture ratio are better than the self-correlation, and the global range of the range is set to 7 m. The water content and the porosity ratio of the silty clay formation are strongly positive correlation, the correlation coefficient is greater than 0.73, the compression coefficient is negative correlation with the compression modulus, the negative correlation coefficient is-0.9527, the water content and the liquid index, The compression coefficient index has a better spatial cocorrelation in different directions, and the correlation of the correlation of the covariates is close to 5 m; the liquid limit, the plastic limit and the compression modulus have a strong spatial autocorrelation, and the global variation value can be set to 7 m. The water content of the clay formation is equal to the pore ratio and the liquid limit, There is a strong positive correlation between the plastic limit and the plastic limit, there is a strong positive correlation between the liquid limit and the plastic limit and the plasticity index, the water content of the clay formation and the pore ratio, the liquid limit, the plasticity index, the liquid index and other parameters have better spatial coordination in different directions, The value of its cocorrelation can be determined to be 5.5m; the water content, liquid limit, plastic limit, plasticity index and liquid index have a strong self-correlation, and the global variation value can be set to 6 m. (3) The research on the scale of the relevant formation rock and soil parameters and the selection analysis of the optimal scale show that, The variation function model of water content, liquid index and compression coefficient is not comparable at different scales. The spatial variation of the water content, the liquid index and the compression coefficient is different to the response of the various scales; the optimal size of the space between the water content and the compression coefficient is 8 m, and the liquid permeability index is 10 m. (4) The application of the geostatistics in the design and construction of the survey is mainly discussed in the study of the bad formation in the study area. The analysis shows that the soil layer liquid limit, the plastic limit and the liquid index variability of the silty soil layer are large, and the survey should be carried out; the spatial variability of the spatial variation in different directions shows that the spatial variability in the Y direction of the silty soil layer is large, and the focus survey should be carried out in this direction. By using the optimal unbiased space interpolation, that is, the Kriging interpolation, the spatial distribution of the main formation compression coefficient is drawn, and it is of practical significance to guide the further investigation and design and construction. (5) The natural factors, such as the atmospheric precipitation, the open pond, the dark pond, the river distribution, the soil composition and the like on the regional scale, have a significant influence on the rock and soil parameters of the formation; human factors, such as survey errors, experimental test methods, and the above-mentioned natural factors also have a mutual relationship, And the indexes of the rock and soil parameters are obviously affected. As a whole, the soil parameters of the formation have moderate and weak spatial variability, and the distribution is more stable. In this paper, based on a large number of field survey data, the soil parameters such as water content, pore ratio, liquid limit, liquid index, plastic limit and plasticity index are clearly defined. The spatial variation of compression modulus and the compression modulus and the internal relationship with the related environmental factors. the reliable formation parameter spatial data enriches the database of the shore-and-sea-phase deposition area, provides an overall framework guide for the further development of the spatial variation of the soil parameter index in the area and the related research, and also provides a digital soil mapping and formation deposition simulation in the large scale in the future, The geological environment assessment and so on provide reliable data support, and the relevant research results will also provide theoretical and practical guidance for macro-decision-making of various construction projects in the study area.
【学位授予单位】:苏州科技学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU43
【相似文献】
相关期刊论文 前10条
1 侯景儒,黄竞先;地质统计学在固体矿产资源/储量分类中的应用[J];地质与勘探;2001年06期
2 林幼斌,杨文凯;地质统计学研究现状及在我国的应用[J];云南财贸学院学报;2001年S2期
3 万昌林,金铜标;地质统计学在矿产资源信息研究中的应用[J];有色冶金设计与研究;2002年04期
4 冯国庆,陈浩,张烈辉,李允;利用多点地质统计学方法模拟岩相分布[J];西安石油大学学报(自然科学版);2005年05期
5 张树泉;王娟;;地质统计学在平坝山石灰石矿均化开采中的应用[J];有色金属(矿山部分);2007年01期
6 孙玉建;;非参数地质统计学进展[J];地质与勘探;2007年04期
7 朱权;;叠后地质统计学反演在大庆长垣油田的应用[J];内蒙古石油化工;2010年08期
8 王家华;赵巍;;基于地震约束的地质统计学建模方法研究[J];海洋石油;2010年04期
9 张林;牟子平;;地质统计学在水环境研究中的应用[J];环境科学与管理;2011年01期
10 尹艳树;张昌民;李玖勇;石书缘;;多点地质统计学研究进展与展望[J];古地理学报;2011年02期
相关会议论文 前10条
1 侯景儒;李飞跃;赵珍梅;李乃云;;地质统计学(空间信息统计学)及其在地质勘查及采矿中的应用[A];1997中国钢铁年会论文集(上)[C];1997年
2 侯景儒;;关于时-空信息统计学(地质统计学)的若干问题[A];第七届全国数学地质与地学信息学术会议论文摘要汇编[C];2004年
3 侯景懦;余先川;;非线性空间信息统计学(地质统计学)的基本理论与方法[A];第七届全国数学地质与地学信息学术会议论文摘要汇编[C];2004年
4 唐攀;林彬;唐晓倩;;传统方法和地质统计学在矿产资源/储量分类中的对比[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
5 黄裕雄;陈剑杰;刘立;赵楠;;工程场地内断层分布特征的地质统计学研究[A];2011年全国工程地质学术年会论文集[C];2011年
6 林文治;;地质统计学在龙王庙贫铁矿床储量估算中的应用[A];2011年中国矿业科技大会论文集[C];2011年
7 陈兴海;;地质统计学方法在德兴铜矿地质建模中的应用[A];2004年全国矿山信息化建设成果及技术交流会论文集[C];2004年
8 张程远;席道瑛;刘小燕;;地质统计学方法在地震反演中的适用性[A];中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集[C];2002年
9 张争争;王学平;;地质统计学中变差函数在矿产勘探中的应用[A];第十二届全国数学地质与地学信息学术研讨会论文集[C];2013年
10 陈亚新;徐英;史海滨;魏占民;;条件模拟在我国地质-非地质领域中应用研究的进展[A];第七届全国数学地质与地学信息学术会议论文摘要汇编[C];2004年
相关重要报纸文章 前3条
1 尹镇南;地质统计学:一花催得百花开[N];中国矿业报;2011年
2 尹镇南;我国地质统计学软件发展的思考[N];中国有色金属报;2011年
3 尹镇南;让地质统计学更好地为我国地矿及相关领域服务[N];中国有色金属报;2011年
相关博士学位论文 前2条
1 孙玉建;地质统计学在固体矿产资源评价中的若干问题研究[D];中国地质大学(北京);2008年
2 程勖;地质统计学软件开发与应用[D];吉林大学;2009年
相关硕士学位论文 前10条
1 王海虹;地质统计学在石油勘探开发中的应用[D];东北石油大学;2013年
2 谭勇;基于地质统计学的煤质预测系统研究与实现[D];西安科技大学;2010年
3 陈涛;辫状河储层多点地质统计学建模方法研究[D];西安石油大学;2014年
4 左健扬;地震驱动建模和地质统计学建模方法的比较和评价[D];中国石油大学;2011年
5 邓明国;个旧矿区芦塘坝10号矿群矿床模型研究[D];昆明理工大学;2005年
6 李黎;地质统计学在储层预测中的研究与应用[D];中国石油大学;2007年
7 李宁;基于模拟退火的地质统计学反演方法研究[D];中国石油大学(华东);2013年
8 晋京;基于Matlab的资源量估算模型的研究与应用[D];长安大学;2013年
9 张奎;地质统计学方法在官104断块储层建模中的应用[D];西南石油大学;2006年
10 王镜惠;地质统计学反演在油藏建模中应用的研究[D];西安石油大学;2012年
,本文编号:2504370
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/2504370.html