A Study of Typomorphism of Placer Gold in North Pakistan:Imp
发布时间:2022-02-19 06:59
巴基斯坦北部具有复杂的区域成矿地质构造背景,区内发育许多不同种类、不同规模的金属矿床,比如岛弧-弧后浅成低温热液金属矿床、岛弧Cu-(Mo)-(Au)斑岩型矿床、块状硫化物黑钨矿床、矽卡岩型矿床、SEDEX Pb-Zn矿床、Ni-Co-Cu硫化物矿床、造山型金矿床和PGE。但受喜马拉雅山脉崎岖的冰川地形的影响,该区域内的热液型金矿床均未被开发,矿产开采还仅仅局限于砂金矿床,且这些砂金矿床的源区也一直没有定论。利用扫描电镜、电子探针和元素面扫等方法对金矿物微形貌、主微量元素进行了研究。为了查明黄铁矿矿物属性,进行了XRD、热电性测试、主微量元素测试、电子探针和元素面扫描、同位素分析等。通过以上实验,讨论了巴基斯坦北部砂矿床的成因、黄铁矿中金的富集机制、成矿流体来源、母岩源区、矿床的剥蚀率等。利用LAICP-MS测定了碎屑锆石U-Pb同位素组成和年龄,讨论金矿形成时代,并通过锆石中的微量元素对Bagrote、Shimshal和Dainter地区的潜在成矿岩石和不具成矿潜力的岩石进行判别。巴基斯坦北部砂金颗粒形貌特征各异,呈不规则形态到次圆-圆形。Bagrote和Dainter两个地区的砂金...
【文章来源】:中国地质大学(北京)北京市211工程院校教育部直属院校
【文章页数】:234 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
摘要
Chapter 1 Introduction
1.1 Project preface and rationality
1.2 Previous research
1.3 Objectives
1.4 Selection of Study area
1.4.1 Location selected
1.4.2 Accessibility
1.4.3 Climate and Topography
1.5 Summary of the work fulfilled
Chapter 2 Geological setting and metallogeny of North Pakistan
2.1. Tectonic evolution
2.2 Geological setting
2.2.1 Karakorum terrain (Asia)
2.2.1.1 The Northern Karakoram terrane
2.2.1.2 Karakoram Batholith
2.2.1.3 The Southern Metamorphic Complex (KMC)
2.2.2 Karakoram-Kohistan Suture Zone (KKSZ/MKT)
2.2.3 Kohistan Paleo Island Arc
2.2.3.1 Yasin Group (Volcanics and sediments)
2.2.3.2 Chalt Volcanics
2.2.3.3 Drosh sediments and Volcanics
2.2.3.4 The Shamran/Teru volcanics
2.2.3.5 Dir Group
2.2.3.6 The Jaglot Group
2.2.3.7 Kohistan batholith
2.2.3.8 The Chilas Complex
2.2.3.9 Kamila amphibolites
2.2.3.10 Jijal, Sapat and Tora-Tiga complexes
2.2.4 Indus Suture Zone
2.2.5 Indian Terrain Rocks
2.2.6 Metallogeny of North Pakistan
2.2.7 Glacial system
Chapter 3 Morphology and geochemistry of placer gold: implication forprovenance and exploration
3.1 Introduction
3.2 Sampling and Analytical methods
3.3 Results
3.3.1 Gold grain morphology
3.3.1.1 Shapes and size of gold grains
3.3.1.2 Microtexture of gold grains
3.3.2 Gold grain chemistry
3.3.2.1 EDS results
3.3.2.2 EMPA Data
3.3.2.3 Mineral Inclusions
3.4 Discussion
3.4.1 Morphology as indicator of proximity to gold source
3.4.2 Microchemistry and gold source type
3.4.3 Authigenic gold
3.5 Summary
Chapter 4 Morphological, thermoelectrical, geochemical and isotopicanatomy of auriferous pyrite
4.1 Introduction
4.2 Sampling and analytical techniques
4.2.1 Powder XRD analysis
4.2.2 Thermoelectricity analysis
4.2.3 EPMA Analysis and EPMA X-Ray elemental maps
4.2.4 Sulfur and lead Isotope analysis
4.3 Results
4.3.1 Morphology of pyrite
4.3.1.1 Crystal habit
4.3.2 Thermoelectricity
4.3.2.1 Thermoelectric theory
4.3.2.2 Thermoelectric analysis of pyrite
4.3.2.3 Temperature calculation using thermoelectric coefficient
4.3.2.4Thermoelectric parameter of pyrite
4.3.3 Pyrite Chemistry
4.3.3.1 Major and trace elements of pyrite
4.3.3.2 Element distribution in pyrite
4.3.4 Isotopic composition of pyrite
4.3.4.1 Sulfur isotopic composition of pyrite
4.3.4.2 Lead isotopic characteristics of pyrite
4.4 Discussion
4.4.1 Deposit types inferred in the hinterlands
4.4.2 Mineralisation and source lithology
4.4.3 Au incorporation in Pyrite
4.4.4 Ore forming fluids and source of metals and sulfur
4.5 Summary
Chapter 5 U-Pb geochronology, texture and composition of detrital zirconfrom placer deposits as a Pathfinder for source deposits
5.1 Introduction
5.2 Sampling and Analytical techniques
5.2.1 Zircon cathodoluminescencent (CL) images
5.2.2 LA-ICPMS zircon U-Pb geochronology and trace element analysis
5.3 Results
5.4 Discussion
5.4.1 Zircon fertility indicators
5.4.2 Zircon trace element proxy for magmatic water content
5.4.3 REE patterns of detrital zircon as fertility indicators
5.4.4 Detrital Zircon Textures as fertility indicator
5.4.5 Comparison of the fertile age suits with local geology
5.5 Summary
Chapter 6 Conclusions and recommendations
6.1 Conclusions
6.2 Recommendations for future work
References
Appendix
Resume
【参考文献】:
期刊论文
[1]Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. David I.Groves,M.Santosh,Richard J.Goldfarb,Liang Zhang. Geoscience Frontiers. 2018(04)
[2]Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China[J]. Yutong Yan,Na Zhang,Shengrong Li,Yongsheng Li. Geoscience Frontiers. 2014(02)
[3]玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 申俊峰,李胜荣,马广钢,刘艳,于洪军,刘海明. 地学前缘. 2013(03)
[4]胶东各类型金矿床黄铁矿化学成分标型特征[J]. 严育通,张娜,李胜荣,李永生. 地学前缘. 2013(03)
[5]河北省灵寿县西石门金矿黄铁矿热电性标型及其找矿意义[J]. 李青,李胜荣,张秀宝,张林杰,赵毅,赵夫旺,刘洋. 地质学报. 2013(04)
[6]中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 严育通,李胜荣,贾宝剑,张娜,闫丽娜. 地学前缘. 2012(04)
[7]胶东金青顶金矿床黄铁矿热电性标型特征及其地质意义[J]. 陈海燕,李胜荣,张秀宝,周起凤,张运强,刘振豪,张海芳,王宁. 矿床地质. 2010(06)
[8]西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J]. 侯增谦,孟祥金,曲晓明,高永丰. 矿床地质. 2005(02)
[9]黄铁矿的微量元素及热电性和晶体形态分析[J]. 胡楚雁. 现代地质. 2001(02)
[10]黄铁矿热电性研究方法及其在胶东金矿的应用[J]. 邵伟,陈光远,孙岱生. 现代地质. 1990(01)
本文编号:3632450
【文章来源】:中国地质大学(北京)北京市211工程院校教育部直属院校
【文章页数】:234 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
摘要
Chapter 1 Introduction
1.1 Project preface and rationality
1.2 Previous research
1.3 Objectives
1.4 Selection of Study area
1.4.1 Location selected
1.4.2 Accessibility
1.4.3 Climate and Topography
1.5 Summary of the work fulfilled
Chapter 2 Geological setting and metallogeny of North Pakistan
2.1. Tectonic evolution
2.2 Geological setting
2.2.1 Karakorum terrain (Asia)
2.2.1.1 The Northern Karakoram terrane
2.2.1.2 Karakoram Batholith
2.2.1.3 The Southern Metamorphic Complex (KMC)
2.2.2 Karakoram-Kohistan Suture Zone (KKSZ/MKT)
2.2.3 Kohistan Paleo Island Arc
2.2.3.1 Yasin Group (Volcanics and sediments)
2.2.3.2 Chalt Volcanics
2.2.3.3 Drosh sediments and Volcanics
2.2.3.4 The Shamran/Teru volcanics
2.2.3.5 Dir Group
2.2.3.6 The Jaglot Group
2.2.3.7 Kohistan batholith
2.2.3.8 The Chilas Complex
2.2.3.9 Kamila amphibolites
2.2.3.10 Jijal, Sapat and Tora-Tiga complexes
2.2.4 Indus Suture Zone
2.2.5 Indian Terrain Rocks
2.2.6 Metallogeny of North Pakistan
2.2.7 Glacial system
Chapter 3 Morphology and geochemistry of placer gold: implication forprovenance and exploration
3.1 Introduction
3.2 Sampling and Analytical methods
3.3 Results
3.3.1 Gold grain morphology
3.3.1.1 Shapes and size of gold grains
3.3.1.2 Microtexture of gold grains
3.3.2 Gold grain chemistry
3.3.2.1 EDS results
3.3.2.2 EMPA Data
3.3.2.3 Mineral Inclusions
3.4 Discussion
3.4.1 Morphology as indicator of proximity to gold source
3.4.2 Microchemistry and gold source type
3.4.3 Authigenic gold
3.5 Summary
Chapter 4 Morphological, thermoelectrical, geochemical and isotopicanatomy of auriferous pyrite
4.1 Introduction
4.2 Sampling and analytical techniques
4.2.1 Powder XRD analysis
4.2.2 Thermoelectricity analysis
4.2.3 EPMA Analysis and EPMA X-Ray elemental maps
4.2.4 Sulfur and lead Isotope analysis
4.3 Results
4.3.1 Morphology of pyrite
4.3.1.1 Crystal habit
4.3.2 Thermoelectricity
4.3.2.1 Thermoelectric theory
4.3.2.2 Thermoelectric analysis of pyrite
4.3.2.3 Temperature calculation using thermoelectric coefficient
4.3.2.4Thermoelectric parameter of pyrite
4.3.3 Pyrite Chemistry
4.3.3.1 Major and trace elements of pyrite
4.3.3.2 Element distribution in pyrite
4.3.4 Isotopic composition of pyrite
4.3.4.1 Sulfur isotopic composition of pyrite
4.3.4.2 Lead isotopic characteristics of pyrite
4.4 Discussion
4.4.1 Deposit types inferred in the hinterlands
4.4.2 Mineralisation and source lithology
4.4.3 Au incorporation in Pyrite
4.4.4 Ore forming fluids and source of metals and sulfur
4.5 Summary
Chapter 5 U-Pb geochronology, texture and composition of detrital zirconfrom placer deposits as a Pathfinder for source deposits
5.1 Introduction
5.2 Sampling and Analytical techniques
5.2.1 Zircon cathodoluminescencent (CL) images
5.2.2 LA-ICPMS zircon U-Pb geochronology and trace element analysis
5.3 Results
5.4 Discussion
5.4.1 Zircon fertility indicators
5.4.2 Zircon trace element proxy for magmatic water content
5.4.3 REE patterns of detrital zircon as fertility indicators
5.4.4 Detrital Zircon Textures as fertility indicator
5.4.5 Comparison of the fertile age suits with local geology
5.5 Summary
Chapter 6 Conclusions and recommendations
6.1 Conclusions
6.2 Recommendations for future work
References
Appendix
Resume
【参考文献】:
期刊论文
[1]Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. David I.Groves,M.Santosh,Richard J.Goldfarb,Liang Zhang. Geoscience Frontiers. 2018(04)
[2]Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China[J]. Yutong Yan,Na Zhang,Shengrong Li,Yongsheng Li. Geoscience Frontiers. 2014(02)
[3]玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 申俊峰,李胜荣,马广钢,刘艳,于洪军,刘海明. 地学前缘. 2013(03)
[4]胶东各类型金矿床黄铁矿化学成分标型特征[J]. 严育通,张娜,李胜荣,李永生. 地学前缘. 2013(03)
[5]河北省灵寿县西石门金矿黄铁矿热电性标型及其找矿意义[J]. 李青,李胜荣,张秀宝,张林杰,赵毅,赵夫旺,刘洋. 地质学报. 2013(04)
[6]中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 严育通,李胜荣,贾宝剑,张娜,闫丽娜. 地学前缘. 2012(04)
[7]胶东金青顶金矿床黄铁矿热电性标型特征及其地质意义[J]. 陈海燕,李胜荣,张秀宝,周起凤,张运强,刘振豪,张海芳,王宁. 矿床地质. 2010(06)
[8]西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J]. 侯增谦,孟祥金,曲晓明,高永丰. 矿床地质. 2005(02)
[9]黄铁矿的微量元素及热电性和晶体形态分析[J]. 胡楚雁. 现代地质. 2001(02)
[10]黄铁矿热电性研究方法及其在胶东金矿的应用[J]. 邵伟,陈光远,孙岱生. 现代地质. 1990(01)
本文编号:3632450
本文链接:https://www.wllwen.com/kejilunwen/diqiudizhi/3632450.html