无人机影像正射纠正与拼接技术的研究与应用
本文关键词: 无人机影像 正射纠正 有理函数模型 Dijkstra算法 影像拼接 出处:《吉林大学》2017年硕士论文 论文类型:学位论文
【摘要】:近年来,由于人们对快速测绘与高精度测绘的研究与开发越来越关注,相比较于传统航天遥感平台所展现出来的容易受外界环境的强烈影响,作业耗时较长,机动性差等不可避免的因素影响,无人机凭借其独有的高机动灵活性、高效率及低消耗等优点,成功成为传统遥感平台和常规航空摄影测量技术的合理代替,同时也受到相关行业的密切关注和重点研发;尤其在小范围的高精度定位数据和高分影像快速获取、灾害应急响应及危险区域的空中监测等方面具有明显的优势,开发针对无人机影像的快速处理算法,面对地理国情普查、国家应急救灾及数字城市建设等方面都具有极为关键的优势。在低空无人机遥感影像处理系统中,影像的正射纠正及拼接是无人机遥感影像处理的关键。选择适当的高效的方法将无人机航摄影像进行正射影像校正及拼接对于实现数字正射影像的自动化生产具有重要意义。本文的研究重点是无人机影像正射纠正与拼接技术,主要从以下几个方面进行研究:(1)详细论述了影像正射纠正的基本原理的处理流程,分析总结了上述原理与方法的优缺点及不同条件下的兼容性;(2)分析无人机正射影像拼接方法,主要包括Dijkstra算法、动态规划法拼接线、Twin snake算法镶嵌线检测和蚁群算法镶嵌线等影像拼接算法的原理、作业流程及优缺点;(3)结合长春净月和德惠同太乡苇子村工程实例,进行无人机影像正射纠正及拼接的实验验证及分析。净月实验区主要由丘陵地区及居民区构成,无人机平台携载索尼a7r相机摄取两条航带、59幅航摄像片航摄影像,摄区范围:43°42′01.6488′′N-43°42′08.23824′′N,125°19′14.8314′′E-125°20′17.7738′′E,飞行方向大致为东西走向;德惠市同太乡苇子村实验区地势平坦,以平原地势为主,包含部分居民区,无人机平台携载索尼ILCE-QX1相机摄取20条航带、884幅航摄像片,摄区范围:经纬度为44°23′09.276′′N-44°25′58.8′′N,125°20′46.068′′E-125°25′20.928′′E,飞行方向大致为南北走向。对这两个实验区的无人机影像结合POS数据进行空三加密,逐一正射纠正单幅影像,最后拼接生成正射影像图。在德惠市同太乡苇子村实验区选取100个检校点对所处理的正射影像进行精度检验,得到平面点位中误差为12.2cm,满足精度要求;另外,选取局部正射影像与该区域已有的DLG进行叠加分析验证正射影像的质量,由此发现,居民区及平原地区的正射影像质量最高,丘陵地区次之。
[Abstract]:In recent years, because people pay more and more attention to the research and development of rapid mapping and high-precision mapping, compared with the traditional space remote sensing platform, it is easy to be strongly affected by the external environment, and the operation time is longer. Due to its unique advantages of high mobility, high efficiency and low consumption, UAV has become a reasonable replacement of traditional remote sensing platform and conventional aerial photogrammetry technology. At the same time, it also receives the close attention and the key research and development of the related industries; Especially in the small range of high-precision positioning data and high-score image rapid acquisition disaster emergency response and aerial monitoring in dangerous areas and other aspects have obvious advantages to develop a rapid processing algorithm for UAV images. Facing the geographical situation survey, the national emergency relief and the digital city construction and so on, all have the extremely vital superiority, in the low altitude unmanned aerial vehicle remote sensing image processing system. The key of UAV remote sensing image processing is to correct and concatenate the orthophoto image of UAV. Selecting proper and efficient method to correct and assemble aerial aerial image of UAV image can realize the automatic production of digital orthophoto image. This paper focuses on orthophoto correction and splicing technology of UAV images. The processing flow of the basic principle of orthophoto correction is discussed in detail, and the advantages and disadvantages of the above principles and methods and the compatibility under different conditions are analyzed and summarized. 2) analyze the orthophoto mosaic method of UAV, including Dijkstra algorithm and dynamic programming method. The principle, operation flow, advantages and disadvantages of the image mosaic algorithms, such as Twin snake algorithm mosaic line detection and ant colony algorithm mosaic line algorithm; Combined with the engineering examples of Jingyue in Changchun and Weizi Village in Tongtai Township of Dehui, the experimental verification and analysis of orthophoto correction and splicing of UAV images are carried out. The experimental area of Jingyue is mainly composed of hilly areas and residential areas. The UAV platform carries a Sony a7r camera to capture 59 aerial photographs of two airstrips. The range of shooting area is: 43 掳42 / 01.6488 / N-43 掳42 / 08.23824 / N. 125 掳19m 14.8314m E-125 掳20 掳17.7738C, the direction of flight is roughly east-west direction; The experimental area of Weizi Village in Tongtai Township of Dehui City is flat, mainly plain terrain, including some residential areas. The UAV platform carries Sony ILCE-QX1 camera to take 884 aerial photographs of 20 flight belts. Area: longitude and latitude: 44 掳23 / 09.276 / N, N-44 掳25N / 58.8N. 125 掳20 掳46.068 掳E-125 掳25 掳20.928 E. The flight direction is approximately north-south direction. The UAV images of the two experimental areas are encrypted with POS data, and one by one orthography is used to correct a single image. At last, the orthophoto map was constructed. 100 calibration points were selected to check the accuracy of the processed orthophoto images in Weizi Village, Tongtai Township, Dehui City, and the median error of plane points was 12.2cm. Meet the precision requirements; In addition, the quality of orthophoto images is verified by superposition analysis between local orthophoto images and existing DLG in this area. It is found that the quality of orthophoto images is the highest in residential areas and plain areas, followed by hilly areas.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P23
【参考文献】
相关期刊论文 前10条
1 王爽;李炯;王剑;;基于Virtuo-Zo和Geoway的DLG数据制作与质量控制研究[J];测绘与空间地理信息;2017年01期
2 张迎燕;田林亚;付五洲;曹奇;刘锋;;基于神经网络的机载LIDAR高程数据系统误差纠正方法研究[J];勘察科学技术;2015年05期
3 赵博;;浅谈像素工厂的空三加密流程[J];测绘与空间地理信息;2014年02期
4 孟淑英;;自动检测拼接线的无人机视频影像快速拼接方法[J];测绘通报;2013年05期
5 李新;葛小燕;;基于SIFT的低空遥感图像拼接[J];制造业自动化;2013年03期
6 朱爱源;;激光雷达地形测绘遥感技术研究[J];科技创新导报;2012年17期
7 郭华东;;数字地球:10年发展与前瞻[J];地球科学进展;2009年09期
8 杜敏;李明会;颜萍;张玉丽;;全数字摄影测量DEM在生产中的质量控制[J];测绘与空间地理信息;2009年04期
9 袁修孝;刘欣;;基于有理函数模型的高分辨率卫星遥感影像匹配[J];武汉大学学报(信息科学版);2009年06期
10 张瑜;赤娜;胡笑君;;光学雷达大气折射误差修正方法研究[J];电光与控制;2009年05期
相关博士学位论文 前1条
1 方贤勇;图像拼接技术研究[D];浙江大学;2005年
相关硕士学位论文 前9条
1 赵翔;基于无人机航摄DOM生成技术的研究与应用[D];东华理工大学;2015年
2 陈天yN;基于CIPS的低空无人机遥感影像处理研究[D];东华理工大学;2013年
3 刘淑慧;无人机正射影像图的制作[D];东华理工大学;2013年
4 张文博;无人机航测技术在土地综合整治中的应用研究[D];长沙理工大学;2013年
5 王利勇;无人机低空遥感数字影像自动拼接与快速定位技术研究[D];解放军信息工程大学;2011年
6 袁国体;航空遥感影像正射校正关键技术研究[D];河南理工大学;2011年
7 郝思宝;数字正射影像建库关键技术研究[D];南京师范大学;2007年
8 李晓娟;图像拼接技术研究[D];西安电子科技大学;2007年
9 张鹏强;线阵CCD遥感卫星影像目标精确定位技术研究与实践[D];中国人民解放军信息工程大学;2003年
,本文编号:1474639
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1474639.html