当前位置:主页 > 科技论文 > 测绘论文 >

基于半监督集成支持向量机的土地覆盖遥感分类方法研究

发布时间:2018-02-19 17:58

  本文关键词: 支持向量机 自适应变异粒子群 半监督学习 Self-training Gustafson-kessel 集成学习 土地覆盖 遥感分类 出处:《中国科学院研究生院(东北地理与农业生态研究所)》2013年博士论文 论文类型:学位论文


【摘要】:土地覆盖真实的反映了地表覆盖情况,它与人类的生产、生活休戚相关。长期以来,土地覆盖变化的研究一直是全球环境研究的热点,,无论从社会经济角度还是从生态环境角度均具有重要的意义。为了全面掌握土地覆盖变化信息,迫切需要使用切实有效的方法实现土地覆盖宏观、动态、大尺度的制图与监测,遥感技术迅猛发展为这一需求提供可能。然而,目前遥感信息处理和分类的水平大大滞后于遥感影像获取技术的发展。因此,研究新理论、新方法提高遥感信息的处理能力具有十分重要的意义和应用前景。支持向量机(support vector machines,SVM)是近年来机器学习与模式识别领域新的研究焦点,它具有结构简单、适应性强,全局最优等特点,能较好地解决高维特征、非线性,过学习与不确定性等问题,广泛的应用于土地覆盖遥感分类。尽管SVM在遥感信息获取中取得了很好的效果,但仍存在有待改进和完善之处,主要表现在以下两方面:1)参数选择问题,即不准确的分类参数常常影响分类器的分类精度;2)样本不足且代表性不好问题,即当训练样本集远远小于测试样本集,即便SVM具有较强的泛化性,也难以给出令人满意的结果。围绕这些问题本论文开展了如下工作: 1.针对SVM分类过程中核函数选择及参数设置不准确的缺点,提出一种基于自适应变异粒子群优化SVM参数模型(Adaptive mutation particle swarmoptimization SVM,AMPSO-SVM)。AMPSO在运行过程中根据群体适应度方差以及最优解的大小来确定当前最佳粒子的变异概率。与传统粒子群(particleswarm optimization, PSO)优化SVM参数模型(PSO-SVM)相比,AMPSO-SVM能够快速摆脱局部搜索的束缚,提高全局搜索的性能,克服早熟收敛造成分类参数寻找不准确的缺点,同时保持了种群的多样性。最后应用该模型进行多光谱遥感影像的土地覆盖分类实验,并与SVM分类方法、PSO-SVM分类方法进行对比。分类精度从传统PSO-SVM的91.50%提高到93.59%,Kappa系数由0.8903提高为0.9175。c和的取值得到的分类结果明显优于SVM的手工设置值100和0.143所得到的结果(分类精度87.07%,Kappa系数0.8372),结果表明,AMPSO-SVM模型有效的提高了遥感影像的分类精度。 2.提出了一个新的自训练半监督支持向量机方法(PS3VM)。自训练半监督算法最大弊端在于“错误累积”现象,即在学习过程中,一旦某个分类出错,将导致这个错误被继续学习与加强。为了克服这一现象,论文在自训练半监督SVM(S3VM)的基础上引入两个算法:1)从分类器的构造角度,利用自适应变异粒子群算法对SVM参数优化,以提高单个分类器的分类精度;2)在未标记样本的标注阶段,采用Gustafson-kessel模糊聚类算法(GKclust)将最接近样本的有效无标签样本作为标注对象,以控制错误信息的输入。为了测试所提模型的有效性,分别针对遥感的数字化集合和影像集合进行分类实验,并与AMPSO-SVM(简称PSVM)监督分类方法、未改进自训练S3VM方法进行对比实验,由PS3VM产生的分类精度(95.10%)分别比S3VM(93.06)高出2.04;比PSVM(90.81%)高出4.29%。实验结果一方面说明了己标记样本和未标记样本的用量比例必须满足一定的阈值要求(1:3),才能产生最小的泛化误差;另一方面证实了利用所提出学习框架能够获得较好的分类精度。 3.对于样本不足且代表不好而造成的小样本问题,学者们普遍采用半监督学习和集成学习两种范式对SVM进行改进。然而,集成学习与半监督学习之间存在许多互补性,且二者的混合范式(即半监督集成)可以更大程度地改进学习系统的泛化能力。因此,本文设计了一种新的半监督集成方案(EPS3VM),PS3VM半监督方法利用未标记数据有效的应对训练样本不足缺点的同时也产生若干性能差异的个体分类器,将这些个体分类器采用加权集成策略进一步提高分类模型的泛化能力。为了测试其性能,应用该模型进行多光谱遥感影像的土地覆盖分类实验,并与其相关算法进行对比。分类精度从92.16%(PS3VM)提高到96.88%,Kappa系数由0.9010提高为0.9606。结果表明,EPS3VM克服传统SVM参数选择不准确的同时有效的应对了小样本问题,分类性能更优。
[Abstract]:......
【学位授予单位】:中国科学院研究生院(东北地理与农业生态研究所)
【学位级别】:博士
【学位授予年份】:2013
【分类号】:P237

【相似文献】

相关期刊论文 前10条

1 潘继斌;回归函数的支持向量机估计法[J];湖北师范学院学报(自然科学版);2003年04期

2 孟科,张恒喜,李寿安,朱家元;基于SVM的可靠性评估方法研究[J];中国制造业信息化;2004年10期

3 周秀平;王文圣;黄伟军;;支持向量机回归模型在径流预测中的应用[J];水电能源科学;2006年04期

4 胡挺;;基于支持向量机的并购目标搜索研究[J];统计与决策;2007年06期

5 邹华胜;宁书年;杨峰;徐遵义;;支持向量机在储层厚度预测和计算中的应用[J];地球物理学进展;2007年05期

6 范千;王新洲;许承权;;大坝变形预测的支持向量机模型[J];测绘工程;2007年06期

7 郭丽娟;孙世宇;段修生;;支持向量机及核函数研究[J];科学技术与工程;2008年02期

8 王炜;郭小明;王淑艳;刘丽琴;;关于核函数选取的方法[J];辽宁师范大学学报(自然科学版);2008年01期

9 王振友;叶丽婷;牛庆敏;;大气中臭氧含量分析预测的支向量机模型[J];数学的实践与认识;2008年09期

10 王海洋;丁正生;;支持向量机训练算法概述[J];科技信息(科学教研);2008年09期

相关会议论文 前10条

1 林杰华;张斌;李冬森;宋华茂;余志强;王浩;;支持向量机在电力客户信用评级中的应用[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年

2 蒋铁军;张怀强;李积源;;多变量系统预测的支持向量机方法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年

3 黄淑云;孙兴玉;梁汝萍;邱建丁;;基于小波支持向量机预测蛋白质亚细胞定位研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年

4 谢湘;匡镜明;;支持向量机在语音识别中的应用研究[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年

5 涂冬成;薛龙;刘木华;赵进辉;沈杰;吁芳;;基于支持向量机的鹅肉肉色客观评定研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年

6 杨凌;刘玉树;;基于支持向量机的坦克识别算法[A];第三届全国数字成像技术及相关材料发展与应用学术研讨会论文摘要集[C];2004年

7 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年

8 张军;;支持向量机方法在地下水位干扰排除中的初步应用[A];2007年地震流体学术研讨会论文摘要集[C];2007年

9 许建生;盛立东;;基于改进的支持向量机和BP神经网络的识别算法[A];第八届全国汉字识别学术会议论文集[C];2002年

10 荣海娜;张葛祥;张翠芳;;基于支持向量机的非线性系统辨识方法[A];中国自动化学会、中国仪器仪表学会2004年西南三省一市自动化与仪器仪表学术年会论文集[C];2004年

相关重要报纸文章 前10条

1 杨立民 朱智良;未来的遥感技术[N];科技日报;2001年

2 王东华邋罗建军;美国国家地图建设[N];中国测绘报;2007年

3 ;用数字描述神州大地[N];经济日报;2006年

4 记者 罗晖;国家基础测绘数据库中城市居民能看到自己的家[N];科技日报;2006年

5 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年

6 李水根;计算机详解配伍与药效关系[N];健康报;2005年

7 实习记者 高鹏;我国基础测绘工程实现网民梦想[N];中国知识产权报;2006年

8 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年

9 戴随刚邋周秉荣;为环保决策提供科学依据[N];中国气象报;2008年

10 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年

相关博士学位论文 前10条

1 刘颖;基于半监督集成支持向量机的土地覆盖遥感分类方法研究[D];中国科学院研究生院(东北地理与农业生态研究所);2013年

2 刘叶青;原始空间中支持向量机若干问题的研究[D];西安电子科技大学;2009年

3 常甜甜;支持向量机学习算法若干问题的研究[D];西安电子科技大学;2010年

4 胡运红;支持向量机的若干算法研究[D];山东科技大学;2011年

5 周喜川;非可信环境下的支持向量机研究[D];浙江大学;2010年

6 赵莹;半监督支持向量机学习算法研究[D];哈尔滨工程大学;2010年

7 杜小芳;基于CPFR的农产品采购模型研究[D];华中科技大学;2005年

8 刘育明;动态过程数据的多变量统计监控方法研究[D];浙江大学;2006年

9 栾锋;支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D];兰州大学;2006年

10 孙薇;市场条件下抽水蓄能电站效益综合评价及运营模式研究[D];华北电力大学(河北);2007年

相关硕士学位论文 前10条

1 刘艳伟;支持向量机方法在感潮河段洪峰水位预报中的应用[D];浙江大学;2010年

2 杨镭;支持向量机算法设计及在高分辨雷达目标识别中的应用[D];国防科学技术大学;2010年

3 童振;基于支持向量机的电解液成分预测[D];东北大学;2008年

4 聂小芳;模糊粗糙集与支持向量机在煤与瓦斯突出预测中的应用研究[D];辽宁工程技术大学;2009年

5 鄢常亮;基于支持向量机的高炉向凉向热炉况预测研究[D];内蒙古科技大学;2010年

6 韩叙东;基于支持向量机的水电故障分类器的设计与实现[D];东北大学;2008年

7 冯杰;慢时变对象的支持向量机建模与在线校正方法研究[D];东北大学;2009年

8 朱耿峰;支持向量机在冲击地压预测模型中的应用研究[D];山东科技大学;2010年

9 王奇安;基于广泛内核的CVM算法研究及参数C的选择[D];南京航空航天大学;2009年

10 张永新;基于支持向量机和遗传算法相结合的模拟电路故障诊断方法研究[D];东北大学;2009年



本文编号:1517763

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1517763.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f6c74***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com