机载LiDAR点云数据的建筑物提取和模型规范化研究
本文选题:机载LiDAR 切入点:数据滤波 出处:《南京大学》2013年硕士论文 论文类型:学位论文
【摘要】:建筑物的识别与提取一直是测绘、遥感领域研究的热点。建筑物作为城区地面的重要特征在图像特征匹配、地形图更新、数字城市等领域起重要作用。机载LiDAR作为一种新兴的对地观测技术,能够快速实现地表三维信息的识别与提取。如何从海量的LiDAR点云数据中快速自动化地实现建筑物提取,具有十分重要的意义。 本文在总结前人研究的基础上,提出了一种基于TIN模型的点云分割滤波算法以及一套基于轮廓线的建筑物边界多边形矢量化算法。主要研究内容和结论如下: (1)典型地物LiDAR点云空间分布规律:点云分布特征不仅与相应地物表面物质特性有关,还与其表面平坦与否相关。本文深入地分析了典型地物相应的LiDAR点云的空间分布规律,得出噪声点多呈孤立点分布、植被点云团簇状分布而方差较大、地面平坦而高程差较小、水体因吸收作用,数据点稀疏、地面突出物体积小,脚点数量少、建筑物点云分布规律,点密度均匀等结论。 (2)机载LiDAR滤波算法:在综合评价几类经典滤波算法的基础上,提出了一种基于TIN模型的点云分割算法。本算法通过构建TIN模型建立点云之间的空间邻接关系,采用聚类的思想对点云进行分割,使点云聚类成内部均匀的对象,然后根据对象的高程与方差过滤出建筑物点,完成滤波。选择了三个典型的研究区(10。左右的斜坡、含粗差的不规则复杂建筑物、居民区)进行实验,实验结果表明:斜坡的滤波总体精度达96.61%,Kappa系数达0.9154;复杂建筑物的滤波总体精度达91.69%,Kappa系数达0.8183;大片居民区的滤波精度达93.72%,Kappa系数达0.8076.说明本算法具有很好的抗粗差能力,对斜坡、复杂建筑物等也具有较好的滤波效果,适合城区建筑物LiDAR数据滤波。 (3)建筑物轮廓多边形矢量化:本文应用Alpha-Shapes算法追踪建筑物点集的轮廓线,实现了凹型建筑物及构造复杂建筑物的内外轮廓线的有效提取;其次,本文提出的改进的最小方向差模型拟合算法保证了所计算出的建筑物主方向与初始轮廓多边形所有线段之间的方向差达到最小。实验表明主方向估计值几乎无偏差的概率达69.4%,微小偏差的概率为26.5,大偏差的概率仅为4.1%,提取精度远远高于常用的基于Hough变换、主成分变换、统计直方图等方法。另外,建筑物轮廓多边形规范化方法对初步规范化后的多边形进行边界扩展,使扩展后的多边形线段能够定位于建筑物边缘点。
[Abstract]:The identification and extraction of buildings has been a hot topic in the field of surveying and remote sensing. As an important feature of urban ground, buildings are matched in image features and updated in topographic maps. As a new technology of Earth observation, airborne LiDAR can quickly realize the recognition and extraction of 3D surface information. How to quickly and automatically realize building extraction from massive LiDAR point cloud data. It is of great significance. On the basis of summarizing the previous studies, this paper proposes a point cloud segmentation filtering algorithm based on TIN model and a set of building boundary polygon vectorization algorithm based on contour. The main contents and conclusions are as follows:. 1) the spatial distribution law of LiDAR point cloud of typical ground objects: the distribution characteristics of point clouds are not only related to the surface properties of the corresponding ground objects, but also related to the flatness of the surface. The spatial distribution law of the corresponding LiDAR point clouds of typical ground objects is analyzed in depth in this paper. It is concluded that the noise points are mostly distributed in isolated points, the vegetation point clouds are clustered and the variance is large, the ground is flat and the elevation difference is small, the water body is absorbed, the data points are sparse, the surface protrusions are small in volume and the number of foot points is small. The rule of point cloud distribution and the uniform point density of the building are obtained. (2) Airborne LiDAR filtering algorithm: on the basis of synthetically evaluating several classical filtering algorithms, a point cloud segmentation algorithm based on TIN model is proposed. The spatial adjacency relationship between point clouds is established by constructing TIN model. The idea of clustering is used to segment the point cloud, so that the point cloud is clustered into an internal uniform object. Then, according to the height and variance of the object, the building points are filtered out to complete the filtering. Irregular and complex buildings, residential areas, with gross errors. The experimental results show that the overall filtering accuracy of slope is 96.61 and that of Kappa coefficient is 0.9154, that of complex building is 91.69 and that of Kappa is 0.8183, that of large residential area is 93.72and Kappa is 0.8076.The result shows that the algorithm has a good ability to resist gross error, and has good ability to resist gross error. Complex buildings also have better filtering effect, which is suitable for LiDAR data filtering of urban buildings. (3) Vectorization of building contour polygon: in this paper, Alpha-Shapes algorithm is used to trace the contour line of the building point set, which can effectively extract the inner and outer contour lines of concave building and complex building. Secondly, The improved least direction difference model fitting algorithm proposed in this paper ensures the minimum direction difference between the main direction of the building and all the lines of the initial contour polygon. The experimental results show that the estimated value of the principal direction is almost unbiased. The probability of difference is 69.4, the probability of small deviation is 26.5, the probability of large deviation is only 4.1, and the precision of extraction is much higher than that of Hough transform. In addition the method of building contour polygon normalization extends the boundary of the primary normalized polygon so that the expanded polygon line segment can locate at the edge of the building.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P225.2
【参考文献】
相关期刊论文 前10条
1 张小红,刘经南;机载激光扫描测高数据滤波[J];测绘科学;2004年06期
2 杨化超;邓喀中;张书毕;;基于Hough变换的航空影像建筑物半自动提取[J];测绘科学;2006年06期
3 赵自明;史兵;田喜平;赵松;;LAS格式解析及其数据的读取与显示[J];测绘技术装备;2010年03期
4 罗伊萍;姜挺;王鑫;张锐;罗胜;;基于数学形态学的LiDAR数据滤波新方法[J];测绘通报;2011年03期
5 钱韬;;从DSM数据中自动提取建筑物的方法研究[J];测绘与空间地理信息;2008年06期
6 周飞;;利用Alpha Shapes算法提取离散点轮廓线[J];湖北广播电视大学学报;2010年02期
7 毛建华;何挺;曾齐红;李先华;;基于TIN的LIDAR点云过滤算法[J];激光杂志;2007年06期
8 陈涛,李光耀;平面离散点集的边界搜索算法[J];计算机仿真;2004年03期
9 朱汉华,刘正林,翟永强,路静;航道疏浚区的测量点边界搜索方法[J];武汉理工大学学报(交通科学与工程版);2002年03期
10 吴秀芸;李艳;;基于改进标记分水岭的遥感影像建筑物提取[J];水电能源科学;2010年04期
相关会议论文 前1条
1 陈磊;赵书河;韩文泉;;基于LiDAR数据和高分辨率影像的城区建筑物自动提取研究[A];中国地理学会百年庆典学术论文摘要集[C];2009年
相关博士学位论文 前4条
1 罗伊萍;LIDAR数据滤波和影像辅助提取建筑物[D];解放军信息工程大学;2010年
2 袁枫;机载LIDAR数据处理与土地利用分类研究[D];中国矿业大学;2010年
3 曾齐红;机载激光雷达点云数据处理与建筑物三维重建[D];上海大学;2009年
4 王刃;机载LIDAR数据滤波与建筑物提取技术研究[D];解放军信息工程大学;2008年
相关硕士学位论文 前5条
1 吴秀芸;基于高分辨率遥感影像的建筑物提取及轮廓矢量化研究[D];南京大学;2011年
2 陈磊;基于机载LiDAR和高分辨率遥感影像的城区建筑物提取研究[D];南京大学;2011年
3 王們們;机载LiDAR点云数据滤波算法研究[D];长安大学;2011年
4 陆见微;高分辨率遥感图像中建筑物外形自动提取方法研究[D];中国科学院研究生院(电子学研究所);2006年
5 何正斌;机载LIDAR技术用于数字地面的应用研究[D];长安大学;2008年
,本文编号:1648887
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1648887.html