利用目标区域拓扑关系图提取建筑物点云
本文选题:机载激光雷达 切入点:点云数据 出处:《武汉大学学报(信息科学版)》2017年04期
【摘要】:建筑物提取一直是机载激光点云数据处理研究的热点,其中建筑物和其他地物之间的区分是研究的核心和难点。为提高建筑物与其他地物在机载激光点云中的区分能力,提出了一种建筑物点云层次提取方法。首先,在点云滤波后,从非地面点云中提取建筑物候选区域;然后,通过形态学重建和点云平面分割方法对建筑物候选区域构建多尺度空间,并建立目标区域的拓扑关系图;最后,在拓扑关系图基础上,利用5种特征量对目标区域分类,并精确提取建筑物点云。为了测试算法的有效性和可靠性,利用国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing,ISPRS)提供的Vaihingen和Toronto两组测试数据集进行实验,并由ISPRS对结果进行评估,其中基于面积和目标的完整度、正确率和提取质量分别都大于87.8%、94.7%、87.3%。与其他建筑物提取方法相比,该方法在基于面积和目标的质量指标方面最为稳定。实验结果表明,在不同的城市场景下,该算法能够稳健地提取建筑物,并保持很高的正确率。
[Abstract]:Building extraction has always been a hot topic in airborne laser point cloud data processing, in which the distinction between buildings and other features is the core and difficulty. In this paper, a method of building point cloud level extraction is proposed. Firstly, after point cloud filtering, building candidate area is extracted from non-ground point cloud, and then, By means of morphological reconstruction and point cloud plane segmentation, multi-scale space is constructed for candidate areas of buildings, and topological relation diagrams of target regions are established. Finally, based on topological relation diagrams, five kinds of feature quantities are used to classify target regions. In order to test the validity and reliability of the algorithm, two sets of test data sets, Vaihingen and Toronto, provided by the International Society of Photogrammetry and remote Sensing (ISPRS), were used to test the results and the results were evaluated by ISPRS. Among them, based on the integrity of area and target, the accuracy and quality of extraction are all greater than 87.8% and 94.7%, respectively. Compared with other methods of building extraction, this method is the most stable in terms of quality index based on area and target. The experimental results show that, In different urban scenarios, the algorithm can extract buildings stably and maintain a high accuracy.
【作者单位】: 武汉大学测绘遥感信息工程国家重点实验室;中国地质大学(武汉)信息工程学院;
【基金】:国家科技支撑计划(2014BAL05B07) 国家自然科学基金(41531177) 海洋公益性行业科研专项经费(2013418025-6)~~
【分类号】:P23
【相似文献】
相关期刊论文 前10条
1 高恩阳;郑昊鸿;;点云数据滤波方法综述[J];科技资讯;2012年33期
2 龚书林;;三维激光点云处理软件的若干关键技术[J];测绘通报;2014年06期
3 赵强;彭国华;王锋;;点云精简的一种方法[J];西南民族大学学报(自然科学版);2006年05期
4 李德江;张延波;于曼竹;姜丽丽;曲雪光;;基于扫描模式的点云修复技术研究[J];测绘与空间地理信息;2011年06期
5 蔡来良;李儒;;点云数据处理算法与实现初步研究[J];测绘通报;2012年S1期
6 詹庆明;张海涛;喻亮;;古建筑激光点云-模型多层次一体化数据模型[J];地理信息世界;2010年04期
7 曾敬文;朱照荣;丁锐;;基于立方体网格的数据点云约简和体积计算方法[J];测绘科学;2008年06期
8 杨欣;姚海燕;;平面点云边界参数识别[J];中国西部科技;2009年27期
9 孙瑞;张彩霞;;点云数据压缩算法综述[J];科技信息;2010年32期
10 张毅;闫利;;地面激光点云强度噪声的三维扩散滤波方法[J];测绘学报;2013年04期
相关会议论文 前10条
1 李文涛;韦群;杨海龙;;基于图像的点云生成和预处理[A];2011年全国通信安全学术会议论文集[C];2011年
2 蔡来良;李儒;;点云数据处理算法与实现初步研究[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
3 马国庆;陶萍萍;杨周旺;;点云空间曲线的微分信息计算及匹配方法[A];第四届全国几何设计与计算学术会议论文集[C];2009年
4 江倩殷;刘忠途;李熙莹;;一种有效的点云精简算法[A];第十五届全国图象图形学学术会议论文集[C];2010年
5 解辉;张爱武;孟宪刚;;机载激光点云快速绘制方法[A];第二十五届全国空间探测学术研讨会摘要集[C];2012年
6 李凯;张爱武;;基于激光点云的粮仓储粮数量测量方法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
7 朱晓强;余烨;刘晓平;袁晓辉;Bill P.Buckles;;基于航拍图像和LiDAR点云的城市道路提取[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
8 刘虎;;基于线性八叉树的点云简化与特征提取研究[A];促进科技经济结合,服务创新驱动发展——蚌埠市科协2012年度学术年会论文集[C];2012年
9 李滨;王佳;;基于点云的建筑测绘信息提取[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
10 杨雪春;;反求工程建模中点云切片技术研究[A];全国先进制造技术高层论坛暨第八届制造业自动化与信息化技术研讨会论文集[C];2009年
相关重要报纸文章 前2条
1 曹裕华 高化猛 江鸿宾;激光点云 亦真亦幻[N];解放军报;2013年
2 中国工程院院士 刘先林;四维远见的装备创新[N];中国测绘报;2012年
相关博士学位论文 前10条
1 彭检贵;融合点云与高分辨率影像的城区道路提取与表面重建研究[D];武汉大学;2012年
2 刘涌;基于连续序列自动快速拼接的全方位三维测量技术研究[D];西南交通大学;2013年
3 袁小翠;产品表面缺陷视觉检测数据处理关键技术研究[D];南昌大学;2015年
4 赖祖龙;基于LiDAR点云与影像的海岸线提取和地物分类研究[D];武汉大学;2013年
5 王瑞岩;计算机视觉中相机标定及点云配准技术研究[D];西安电子科技大学;2015年
6 段敏燕;机载激光雷达点云电力线三维重建方法研究[D];武汉大学;2015年
7 韩峰;基于点云信息的既有铁路状态检测与评估技术研究[D];西南交通大学;2015年
8 金龙存;3D点云复杂曲面重构关键算法研究[D];上海大学;2012年
9 李扬彦;基于点云的三维重建与形变事件分析[D];中国科学院深圳先进技术研究院;2013年
10 杨德贺;面向虚拟测方系统的点云聚类与拟合理论[D];中国矿业大学(北京);2014年
相关硕士学位论文 前10条
1 龚硕然;基于Delaunay三角剖分的点云三维网格重构[D];河北大学;2015年
2 杨红粉;频域技术应用于点云配准研究[D];北京建筑大学;2015年
3 段红娟;点云图像交互式曲线骨架提取技术及其应用[D];西南交通大学;2015年
4 张永恒;散乱点云数据配准方法研究[D];长安大学;2015年
5 吴爱;面向特征拟合的点云简化方法研究[D];中国地质大学(北京);2015年
6 薛广顺;基于立体视觉的牛体点云获取方法研究与实现[D];西北农林科技大学;2015年
7 胡诚;精度约束下地表LiDAR点云抽稀方法研究[D];西南交通大学;2015年
8 余明;三维离散点云数据处理技术研究[D];南京理工大学;2015年
9 陈星宇;基于三维彩色点云的地形分类方法研究[D];南京理工大学;2015年
10 朱东方;基于复杂拓扑结构点云的曲线拟合研究与应用[D];山东大学;2015年
,本文编号:1659091
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1659091.html