无气象参数的对流层延迟改正模型研究
本文选题:对流层延迟改正 + BP神经网络 ; 参考:《东南大学》2017年硕士论文
【摘要】:对流层延迟是影响GNSS高精度定位的主要原因之一。GNSS卫星信号经过大气层时,受到中性大气折射的影响会产生时延和路径弯曲的现象,从而造成GNSS信号的传播延迟。目前常用的改正对流层延迟的方法是模型改正法,而模型改正法又分为实测气象模型与无气象参数模型两种。实测气象模型需要获取测站处实测的气象参数,在实际工程应用中会受到一定的限制。而无气象参数模型计算较为方便,但其对流层延迟改正的精度要低于实测气象模型的改正精度。本文提出了一种基于BP神经网络技术改进无气象参数模型的新方法,最终建立起适用于中国地区的高精度天顶对流层延迟改正模型。本文的主要内容和结论如下:(1)利用IGS站提供的高精度对流层延迟数据,对中国地区对流层延迟的时空变化规律进行了详细分析。分析发现,中国地区对流层延迟随纬度的增加而减少,东部沿海地区的对流层延迟要高于西部内陆地区,且青藏高原等高海拔地区的对流层延迟较小。(2)在分析无气象参数的EGNOS模型和余弦函数模型的基础上,利用BP神经网络技术对EGNOS模型进行误差补偿,提出了一种新的IEGNOS融合模型。在中国地区5个IGS站上,IEGNOS模型的偏差绝对值的平均值和平均中误差都要优于EGNOS模型和余弦函数模型。其中EGNOS模型在5个IGS站上的平均中误差为±5.5cm,而IEGNOS模型的平均中误差为±2.9cm,相对于传统的EGNOS模型,IEGNOS模型的精度提高了 47%。(3)对天顶湿延迟反演大气可降水量PWV的过程和误差进行了分析。研究了利用探空气象资料计算加权平均温度和水汽转换系数的方法。以探空资料计算出的水汽转换系数当作真值,利用最小二乘法来建立适用于云南地区无需气象参数的Emardson水汽转换系数计算模型,即IEmardson模型。Emardson模型在云南地区4个站的平均中误差为±0.00495,IEmardson模型的平均中误差为士0.00112,相比于Emardson模型,其精度提高了约77%。因此,该IEmardson模型更适用于云南地区反演大气可降水量PWV。(4)利用IEGNOS模型来反演昆明地区的大气可降水量。通过IEGNOS模型得到测站天顶对流层湿延迟,结合改正后的Emardson水汽转换系数计算模型获取昆明地区一年的大气可降水量PWV,并与探空资料获取的大气可降水量PWV进行了对比。其12个月的月平均可降水量的平均偏差为1.38mm,平均中误差为±3.58mm,与探空资料获取的大气可降水量的变化趋势基本一致,因此在无实测气象参数时其反演的大气可降水量PWV具有较高的可信度。
[Abstract]:Tropospheric delay is one of the main reasons that affect GNSS high precision positioning. When GNSS satellite signals pass through the atmosphere, the phenomenon of delay and path bending will occur due to the influence of neutral atmospheric refraction, resulting in the propagation delay of GNSS signal. At present, the commonly used method to correct tropospheric delay is the model correction method, and the model correction method is divided into two kinds: the measured meteorological model and the non-meteorological parameter model. The measured meteorological model needs to obtain the measured meteorological parameters at the station, which will be limited in practical engineering application. However, the accuracy of tropospheric delay correction is lower than that of measured meteorological model. In this paper, a new method based on BP neural network to improve the model without meteorological parameters is proposed. Finally, a high-precision zenith tropospheric delay correction model suitable for China is established. The main contents and conclusions of this paper are as follows: (1) based on the high-precision tropospheric delay data provided by IGS station, the temporal and spatial variation of tropospheric delay in China is analyzed in detail. It is found that the tropospheric delay decreases with the increase of latitude in China, and the tropospheric delay in the eastern coastal area is higher than that in the western inland area. The tropospheric delay of Qinghai-Xizang Plateau is small. Based on the analysis of EGNOS model and cosine function model without meteorological parameters, a new IEGNOS fusion model is proposed by using BP neural network technology to compensate the error of EGNOS model. In five IGS stations in China, the mean and mean median errors of the absolute deviation of the IEGNOS model are better than those of the EGNOS model and the cosine function model. The mean median error of EGNOS model on 5 IGS stations is 卤5.5 cm, while that of IEGNOS model is 卤2.9 cm. Compared with the traditional EGNOS model, the accuracy of IEGNOS model is improved 47%. The error is analyzed. The method of calculating weighted mean temperature and water vapor conversion coefficient using sounding meteorological data is studied. Taking the water vapor conversion coefficient calculated from the radiosonde data as the true value, a calculation model of Emardson water vapor conversion coefficient suitable for Yunnan region without meteorological parameters is established by using the least square method. That is to say, the mean median error of IEmardson model. Emardson model in four stations in Yunnan area is 卤0.00495. The average median error of IEmardson model is 卤0.00112, which is about 77% higher than that of Emardson model. Therefore, the IEmardson model is more suitable for retrieving the atmospheric precipitable water in Yunnan area. The IEGNOS model is used to retrieve the atmospheric precipitable water in Kunming area. The wet delay of tropospheric troposphere at the zenith of the station is obtained by IEGNOS model, and the annual precipitable water PWV of Kunming area is obtained by combining with the corrected Emardson water vapor conversion coefficient calculation model, and compared with the atmospheric precipitable water PWV obtained from the sounding data. The average deviation of monthly average precipitable water is 1.38 mm and the mean median error is 卤3.58 mm, which is basically consistent with the variation trend of atmospheric precipitable water obtained from sounding data. Therefore, the inversion of atmospheric precipitable water PWV without measured meteorological parameters has a high reliability.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P228.4
【相似文献】
相关期刊论文 前10条
1 何习平;汤璞;万程辉;詹新武;;九江区域对流层延迟模型的研究[J];江西科学;2008年03期
2 陈中新;朱丽强;;区域气象特征对流层延迟模型的建设研究[J];城市勘测;2010年04期
3 戴吾蛟;陈招华;匡翠林;蔡昌盛;;区域精密对流层延迟建模[J];武汉大学学报(信息科学版);2011年04期
4 朱爽;姚宜斌;张瑞;;天顶对流层延迟计算方法研究[J];大地测量与地球动力学;2011年03期
5 任婷;曲国庆;张华荣;袁兴明;;基于小波相关性的对流层延迟改正数据分析[J];山东理工大学学报(自然科学版);2012年04期
6 赵庆志;张书毕;;基于反投影方法的对流层延迟三维层析研究[J];大地测量与地球动力学;2013年04期
7 周淼;刘立龙;张腾旭;张朋飞;黄良珂;;综合时间序列与高程的天顶对流层延迟模型研究[J];城市勘测;2014年02期
8 徐杰;孟黎;任超;徐军;;对流层延迟改正中投影函数的研究[J];大地测量与地球动力学;2008年05期
9 孙晓;张立辉;王勇;杨晶;;利用多元回归方法改正对流层延迟插值误差[J];大地测量与地球动力学;2012年S1期
10 郑作亚,卢秀山,韩晓冬,宫维坤;利用多参数估计法解算对流层延迟[J];山东科技大学学报(自然科学版);2001年04期
相关会议论文 前10条
1 白志强;刘岩;饶才杰;吕达;;一种对流层延迟模型误差改正的实现方法[A];第四届中国卫星导航学术年会论文集-S8卫星导航模型与方法[C];2013年
2 王苗苗;李博峰;沈云中;楼立志;;全球对流层延迟产品评估及其在北斗导航中应用[A];第五届中国卫星导航学术年会论文集-S1 北斗/GNSS导航应用[C];2014年
3 骆金超;杨粉花;;浅谈对流层对GPS定位的影响[A];江苏省测绘学会2007'学术年会论文集[C];2008年
4 汪登辉;高成发;潘树国;;基于网络RTK的对流层延迟分析与建模[A];第三届中国卫星导航学术年会电子文集——S08卫星导航模型与方法[C];2012年
5 钟萍;黄丁发;袁林果;丁晓利;;超高层建筑物GPS动态变形监测中对流层效应影响研究[A];第一届中国卫星导航学术年会论文集(下)[C];2010年
6 张伟;许爱华;苏睿;;运载火箭GPS弹道确定中的区域对流层延迟修正模型[A];第五届中国卫星导航学术年会论文集-S8 卫星导航模型与方法[C];2014年
7 宋淑丽;朱文耀;陈钦明;赵静e,
本文编号:1808672
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1808672.html