当前位置:主页 > 科技论文 > 测绘论文 >

基于CUK-MEANS算法的R树构建

发布时间:2018-05-07 21:23

  本文选题:K-means算法 + 传统R树 ; 参考:《小型微型计算机系统》2016年02期


【摘要】:针对K-means方法的不足,提出CUK-MEANS算法,用以解决K-MEANS方法在初始值选择上的不足和对噪声点敏感的问题.传统R树索引是动态生成的,通过节点的连续插入和分裂实现整个索引的构建,这种方法会造成大量的外包矩形重叠,从而导致索引效率不高.基于CUK-MEANS算法本文进一步提出了CKR-R()算法,利用聚类技术对数据进行预处理,减少节点之间的重叠度,提高了R树的索引效率,并且采用收缩因子使节点内数据更加紧凑,提高节点的空间利用率.理论研究和实验表明所提算法具有较高的查询效率.
[Abstract]:Aiming at the shortage of K-means method, a CUK-MEANS algorithm is proposed to solve the problem of K-MEANS method in selecting initial value and being sensitive to noise points. The traditional R-tree index is dynamically generated. The whole index is constructed by the continuous insertion and splitting of nodes. This method will result in a large number of outsourced rectangular overlaps resulting in low index efficiency. Based on CUK-MEANS algorithm, this paper proposes CKR-RN) algorithm, which uses clustering technology to preprocess the data, reduces the overlap between nodes, improves the index efficiency of R-tree, and uses contraction factor to make the data of nodes more compact. Improve the space utilization of nodes. Theoretical research and experiments show that the proposed algorithm has a high query efficiency.
【作者单位】: 哈尔滨理工大学计算机科学与技术学院;
【基金】:国家自然科学基金项目(61370084)资助 黑龙江省自然科学基金项目(F201302)资助 黑龙江省教育厅科学研究项目(12541128;12531z004)资助
【分类号】:P208;TP311.13


本文编号:1858517

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1858517.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7a2a9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com