当前位置:主页 > 科技论文 > 测绘论文 >

卫星测高反演海洋重力应用研究

发布时间:2018-05-15 10:20

  本文选题:卫星测高 + 反演 ; 参考:《中国地质大学(北京)》2017年硕士论文


【摘要】:海洋重力的精确求定是海洋大地测量的重要课题之一。近年来,海洋重力的应用范围越来越广泛,可以利用高精度海洋重力数据精化地球重力场模型,反演地球内部物质结构,寻找矿藏和了解地质构造,还可以为水下潜器等平台的安全航行提供信息支撑。随着测量理论与技术的不断发展,传统的船载海洋重力探测已很难满足全球海域快速测绘的要求,广阔的海洋里实测重力数据很少,尤其是几大洋的深水区域,重力测量多数地区仍是空白。上世纪70年代,卫星测高技术应运而生,它具有观测精度高、数据周期短以及覆盖面广等一系列地面技术无法比拟的特点,与GPS—样在海洋测绘领域引起了一场深刻的变革。论文立足于如何利用卫星测高技术反演海洋重力,解决我国船载海洋重力测量不足,并进一步探讨海洋重力异常在水下潜器导航定位中的具体应用。论文研究内容及成果由以下部分构成:从应用实际出发,论述了卫星测高的基本数学模型以及卫星测高数据处理中的误差问题,并对卫星测高数据处理中网格化问题进行了深入的探讨,提出了频域内数据网格化的方法,数值计算表明:利用频域中无混淆的核函数,求网格化的数据可滤掉Nyquist频限外的高频信号,避免混淆和位置偏移,并能提高运算速度。研究了基于卫星测高数据计算海域垂线偏差的方法,并联合GeosatGM、ERS-1、T/P、T/P新轨道、ERS-2和GFO等多代测高卫星数据构建了中国近海及邻近海域(0°~45°N,100°~150°E)分辨率为2,×2'网格的子午圈垂线偏差和卯酉圈垂线偏差模型。与国际公认精度较好的CLS-SHOW99垂线偏差模型比较,在子午圈分量上的均方差(RMS)为0.78 ”,在卯酉圈分量上的RMS为1.25”。数值计算表明:本文建立的垂线偏差模型基本达到了CLS-SHOW99垂线偏差模型的精度。研究了基于卫星测高数据反演重力异常的三种基本方法,即Stokes数值反解公式、Stokes解析反解公式和逆Vening-Meinesz公式。以基于卫星测高数据反演计算的中国近海及邻近海域垂线偏差数值模型为基础数据,用逆Vening-Meinesz公式计算了中国近海及邻近海域(0°~45°N, 100°~150°E) 2'×2'网格分辨率的重力异常数值模型。与船测重力异常比较,本文建立的中国近海重力异常数值模型的RMS为3.92mGal。针对水下运动目标匹配导航区(亦即重力适配区)的选择问题,利用上述卫星反演的重力异常数据,根据局部重力场标准差、局部重力场相关系数、局部重力场坡度等3个指标,对我国部分海区匹配导航区进行了选择。
[Abstract]:The accurate determination of marine gravity is one of the important topics in marine geodesy. In recent years, the application of marine gravity has become more and more extensive. It is possible to refine the gravity field model of the earth by using high-precision marine gravity data, to retrieve the material structure of the earth's interior, to search for mineral deposits and to understand geological structures. It can also provide information support for safe navigation of underwater vehicle and other platforms. With the development of surveying theory and technology, the traditional marine gravity survey is difficult to meet the requirement of rapid surveying and mapping of the global sea area. There are few measured gravity data in the vast ocean, especially in the deep water area of several oceans. Most areas of gravity measurements remain blank. In the 1970s, satellite altimetry came into being, which has the characteristics of high observation precision, short data cycle and wide coverage, which is incomparable to a series of ground-based technologies. It has caused a profound change with GPS-sample in the field of marine mapping. This paper is based on how to use satellite altimetry to inverse marine gravity, solve the shortage of marine gravity measurement in China, and further discuss the application of marine gravity anomaly in underwater submersible navigation and positioning. The research contents and results are composed of the following parts: the basic mathematical model of satellite altimetry and the error problem in the processing of satellite altimetry data are discussed from the practical application. The gridding problem of satellite altimetry data processing is discussed deeply, and the method of data gridding in frequency domain is proposed. The numerical calculation shows that the kernel function in frequency domain is not confused. The gridding data can filter out the high frequency signals outside the Nyquist frequency limit, avoid confusion and position offset, and improve the operation speed. The method of calculating the vertical deviation of sea area based on satellite altimetry data is studied. Combined with Geosat GMN ERS-1 / T / P new orbit ERS-2 and GFO, the model of meridional vertical line deviation and Mao unitary vertical line deviation with a resolution of 2, 脳 2 'grid is constructed for 0 掳~ 45 掳N ~ (1) ~ (100 掳) ~ (150 掳) E) in offshore and adjacent waters of China. Compared with the internationally accepted vertical-line deviation model with good accuracy, the mean square error (RMS) of meridional cycle component is 0.78 ", and the RMS of Mao unitary cycle component is 1.25". The numerical results show that the vertical deviation model established in this paper basically achieves the accuracy of the CLS-SHOW99 vertical deviation model. Three basic methods for inversion of gravity anomalies based on satellite altimetry data are studied, that is, Stokes numerical inverse solution formula and inverse Vening-Meinesz formula. Based on the numerical model of vertical line deviation in offshore and adjacent waters of China based on the inversion of satellite altimetry data, the gravity anomaly numerical model with 0 掳~ 45 掳N, 100 掳~ 150 掳E) 2'脳 2'grid resolution is calculated by using inverse Vening-Meinesz formula. Compared with the ship gravity anomaly, the RMS of the numerical model of China offshore gravity anomaly established in this paper is 3.92mGal3.92mGal3.92mGal3.92mGal3.92m. Aiming at the problem of selecting the matching navigation area (i.e. gravity matching area) of underwater moving target, using the gravity anomaly data retrieved by the above mentioned satellite, according to the standard deviation of local gravity field and the correlation coefficient of local gravity field, Three indexes such as local gravimetric field slope are used to select the matching navigation area in some sea areas of China.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P228.3;P223.39

【参考文献】

相关期刊论文 前10条

1 韦金芬;;地磁匹配导航的关键技术现状[J];电子质量;2017年01期

2 陈晶;董铭涛;程建华;;层次分析的惯导/重力匹配导航系统性能评估方法[J];传感器与微系统;2016年09期

3 聂琳娟;超能芳;金涛勇;晁定波;;卫星测高反演海洋重力异常的精度分析[J];测绘科学;2016年09期

4 管一鹤;盛辉;刘善伟;杨俊钢;;联合多代卫星测高资料反演中国南海重力异常[J];海洋测绘;2016年01期

5 刘善伟;李家军;万剑华;杨俊钢;;利用多代卫星测高数据计算中国近海及邻域重力异常[J];海洋科学;2015年12期

6 张胜军;李建成;褚永海;孔祥雪;;基于Cryosat和Jason1 GM数据的垂线偏差计算与分析[J];武汉大学学报(信息科学版);2015年08期

7 张凯;赵建虎;陈卓;;一种互相关水下地形匹配导航算法[J];大地测量与地球动力学;2014年01期

8 康晓磊;崔恒彬;许凤军;;基于重力匹配导航的潜艇避障方法分析[J];舰船电子工程;2013年07期

9 程芦颖;;利用卫星测高垂线偏差计算其他重力场元的特性分析[J];海洋测绘;2013年03期

10 程力;张雅杰;蔡体菁;;重力辅助导航匹配区域选择准则[J];中国惯性技术学报;2007年05期

相关博士学位论文 前1条

1 彭富清;海洋重力辅助导航方法及应用[D];解放军信息工程大学;2009年

相关硕士学位论文 前1条

1 王莉娟;多源卫星高度计中国近海及其邻域重力异常反演与精度检验[D];中国石油大学(华东);2012年



本文编号:1892060

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1892060.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2ed3d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com