车载校园环境激光点云分类与移动目标识别
本文选题:激光扫描 + 数据解译 ; 参考:《武汉理工大学》2013年硕士论文
【摘要】:激光扫描测量技术是继GPS之后测绘领域诞生的一种高新测绘技术,能够快速高效地获取目标物体表面详细的三维空间信息,在数字城市、环境监测、交通仿真等领域为快速实现三维建模提供了一种全新的技术手段。因此,如何有效地处理激光扫描数据具有实际的应用意义。在此背景下,本文以校园真实环境作为实验场景,以车载激光扫描系统作为三维信息的获取方式,研究车载激光扫描数据的处理,重点解决激光点云的分类问题和移动目标的特征提取问题。 围绕上述研究目标,本文主要做了以下三个方面的工作: 1.进行车载校园激光数据的实地采集和预处理 选择了特定的校园场景,使用新型的HDL-64E S2三维激光扫描仪进行了实验数据的实地采集。车载校园激光数据的预处理包括原始激光数据的解译、激光点云的精简和激光点云的三维可视化三方面的工作。通过激光数据的预处理才能获得后处理阶段所需的“点云”。 2.进行车载激光点云的实际分类 激光点云分类是利用一些可行的分类策略,将海量独立的空间点划分到一系列具有实际物理意义的类簇里,使离散的独立点具有实际的物理意义。在分类过程中,本文先对比分析了三种现有的分类策略的优劣,然后选择垂直高度作为主要分类因素、投影点密度作为次要分类因素,提出了一个改进的基于垂直高度的双阈值法进行激光点云的分类,该方法的核心是基于网格的统计分析。 3.进行移动目标的特征提取和目标个体的识别 移动目标(行人和车辆)的特征提取和目标个体的识别是在点云分类的基础(结果集)上进行的。鉴于激光点的高度离散性和抽象性,很难直接从中提取地物的点、线、面特征,本文采用了间接的处理方式,提出了一种基于图像处理技术的移动目标特征提取及识别方法:利用水平网格进行投影,将三维激光点云降维转换得到二维二值灰度图像,然后运用图像处理技术进行相关的特征提取,再根据提取的特征进行目标个体的识别。 运用本文所提出的点云分类方法和特征提取方法,较好地实现了车载校园激光点云的分类、移动目标的特征提取和目标个体的识别。
[Abstract]:Laser scanning measurement technology is a new technology of surveying and mapping , which is born in the field of surveying and mapping after GPS . It provides a brand - new technical means for quickly and efficiently acquiring the detailed three - dimensional space information of the target object surface . In this background , the paper studies the processing of vehicle - mounted laser scanning data in the field of digital city , environment monitoring , traffic simulation and so on , which focuses on the classification of laser spot clouds and the feature extraction of moving targets .
Based on the above research objectives , the thesis mainly focuses on the following three aspects :
1 . On - site collection and preprocessing of vehicle - mounted campus laser data
This paper selects a specific campus scene , and uses the new HDL - 64E S2 three - dimensional laser scanner to collect the experimental data . The preprocessing of the laser data of the vehicle - mounted campus includes the interpretation of the original laser data , the simplification of the laser point cloud and the three - dimensional visualization of the laser point cloud . The " point cloud " required for the post - processing stage can be obtained by the preprocessing of the laser data .
2 . Actual classification of vehicle - mounted laser point cloud
The classification of laser point cloud is to use some feasible classification strategies to divide the mass independent spatial points into a series of cluster with physical meaning . In the process of classification , this paper compares the advantages and disadvantages of three existing classification strategies , then selects the vertical height as the main classification factor and the projection point density as the secondary classification factor , and proposes an improved double threshold method based on the vertical height for the classification of the laser point cloud .
3 . Feature Extraction of Moving Objects and Recognition of Target Individuals
The feature extraction and recognition of moving objects ( pedestrians and vehicles ) are carried out on the basis of point cloud classification ( the result set ) . In view of the high degree of discreteness and abstraction of laser spots , it is difficult to directly extract the points , lines and surface features of the ground objects . In this paper , a moving target feature extraction and recognition method based on image processing technology is proposed : a horizontal grid is used for projection , the three - dimensional laser point cloud is reduced and converted to a two - dimensional binary grayscale image , then the relevant feature extraction is carried out by using the image processing technique , and the identification of the target individual is carried out according to the extracted features .
By using the point cloud classification method and feature extraction method proposed in this paper , the classification , feature extraction and target individual identification of the vehicle - mounted campus laser point cloud are well realized .
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P225.2;TP391.41
【参考文献】
相关期刊论文 前10条
1 王继周,李成名,林宗坚;城市三维数据获取技术发展探讨[J];测绘科学;2004年04期
2 吴芬芳;李清泉;熊卿;;基于车载激光扫描数据的目标分类方法[J];测绘科学;2007年04期
3 李永强;盛业华;刘会云;张卡;戴华阳;;基于车载激光扫描的公路三维信息提取[J];测绘科学;2008年04期
4 杨长强;叶泽田;钟若飞;;基于时空匹配的车载激光点云与CCD线阵图像的融合[J];测绘科学;2010年02期
5 宁津生,晁定波;数字地球与现代测绘科技的发展[J];测绘通报;1999年12期
6 史文中,李必军,李清泉;基于投影点密度的车载激光扫描距离图像分割方法[J];测绘学报;2005年02期
7 李德仁,李清全;论地球空间信息科学的形成[J];地球科学进展;1998年04期
8 李婷;詹庆明;喻亮;;基于地物特征提取的车载激光点云数据分类方法[J];国土资源遥感;2012年01期
9 孙殿柱;范志先;李延瑞;;散乱数据点云边界特征自动提取算法[J];华中科技大学学报(自然科学版);2008年08期
10 柯映林,范树迁;基于点云的边界特征直接提取技术[J];机械工程学报;2004年09期
相关硕士学位论文 前3条
1 罗敏;数字图像辅助激光点云特征提取研究[D];中南大学;2011年
2 吴芬芳;基于车载激光扫描数据的建筑物特征提取研究[D];武汉大学;2005年
3 田鹏;地理场景中点云特征提取与简化研究[D];南京师范大学;2008年
,本文编号:1946627
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/1946627.html