空间信息共享的二三维协同联动箭标标绘技术研究
本文选题:DOAG/S模式 + HGML ; 参考:《成都理工大学》2013年硕士论文
【摘要】:GIS即地理信息系统,随着相关理论和技术的日趋成熟及人们对空间信息技术和位置服务需求的加大,推动着GIS应用逐步地走向大众化、行业化,GIS技术已经应用于与位置相关的各个行业及领域。二维GIS具有宏观性[1]、简洁性等优点,可以快速的对环境进行抽象,具有强大的二维空间查询分析、统计、标绘等功能,二维GIS标绘多运用于军事作战指挥系统,其实时性和协同性还没有得到很好的体现。可见,传统的二维GIS标绘应用在可视化表达方面的效果不佳,然而二维GIS不能给人以真实感、立体感,从而促进了人们对三维GIS[2]的不断探索。三维GIS更加接近于人的视觉习惯,表现更多的空间关系,弥补了二维GIS自身的很多缺陷。但是就目前来说,我国对三维GIS的研究与应用均还处于初步发展阶段,国外已经推出了几款技术较成熟、应用较广泛的三维GIS平台,如Google Earth、NASA World Wind、Skyline、ERSI ArcGlobl等。但是在这些平台上的标绘还处于简单标绘的应用,对复杂箭标标绘应用还很少。由于在空间信息数据管理和数据共享方面存在的问题,二三维标绘的协同性和交互性的体现还较差[3]。 纵观二三维标绘的应用,还发现如下问题: 1)二三维没有构建统一的标绘图标库。 2)协同标绘体现不足,标绘分析、处理功能不足。 3)三维标绘地形匹配算法还有待改进。 4)二三维联动性差。 针对以上不足,提出了本文的创新点,即提出了一种采用数据共享和协同模型的二三维联动箭标标绘方法。 1)主要运用以数据为核心的体系架构,,实现多系统间的数据共享和交换,通过G/S模式提出的HGML[4]可实现海量、异构数据的存储、组织和调度。 2)基于HGML的协同模型,以便实现二三维的协同功能。 3)基于协同模型的二三维联动,以便实现二三维的协同联动标绘。 本文研究的主要内容如下: 1)基于HGML来设计标绘符号库,并在二维和三维场景中均能够调用该标绘符号库实时地标绘箭标符号。 本文采用统一数据交换标准(HGML)对矢量等空间信息数据进行统一的管理,实现多箭头、多箭尾、可拉伸放大等功能的标绘符号库。研究二维箭标标绘时,主要以“嵌击型”和“燕尾型”箭标为例来介绍二维不规则箭标的构建过程,然后利用Flex插件调用标绘符号库来实现二维箭标的标绘;研究三维箭标标绘时,先介绍了三维箭标的绘制原理,再分别介绍了三维模型标绘符号、三维规则矢量标绘符号、三维不规则标绘符号的标绘,且分别介绍了三维模型标绘符号和三维不规则标绘符号的地形匹配。 2)构建了一种基于HGML的二三维协同模型。 HGML以基于XML的数据注册与数据交换机制为主线,通过云服务下的海量数据管理及客户端聚合服务机制,可以有效解决存储管理、服务响应、网络带宽、信息表达、操作控制、技术和分析等瓶颈问题,由此构建一种基于HGML的二三维协同模型可有效的解决二三维标绘的协同问题。基于HGML的二三维协同模型主要包括协同管理、HGML文件存储与分析、会议管理、协议、协同服务和协同交互六个模块,各模块缺一不可,才能保证协同标绘的实时性、时效性和正确性。 3)搭建了一个基于协同模型的二三维联动通信框架。 二三维联动框架的构建结合了协同模型、消息转换和推送技术,且主要分为请求、协同、处理、消息转换、推送、数据展示六个过程。通过基于协同模型的二三维联动通信框架实现了二维GIS与二三维联动服务器的通信和三维GIS与二三维联动服务器的通信。 4)搭建了一个基于协同模型的二三维联动标绘显示框架。 基于协同模型的二三维联动标绘显示架构主要由协同模型、标绘标号库、信息分析处理、操作控制、三维显示和二维显示、输入和输出等模块组成,在协同模型的基础上,实现了二维场景主导的二三维联动标绘和三维场景主导的二三维联动标绘。主要表现在三维场景中标绘时,箭标符号能同步地显示在相同经纬度位置的二维场景中,反之亦然。 通过以上调查及研究,本文构建了基于HGML的多终端协同模型,利用该模型实现了多终端协同的二三维联动标绘。 1)利用会议模式和HGML技术,结合协同原理及技术背景,构建了基于HGML的多终端协同模型。 2)通过二三维联动通信模型及多终端协同模型的结合,构建了基于多终端协同模型的二三维联动显示模块,分别实现了二维场景主导的二三维联动标绘和三维场景主导的二三维联动标绘。
[Abstract]:GIS is the geographic information system. With the increasing maturity of related theories and technologies and the increasing demand for space information technology and location service, the GIS application is gradually moving towards the popularization and industry. The GIS technology has been applied to the various industries and fields related to the location. The two-dimensional GIS has the advantages of macro [1], simplicity and so on. It is fast to abstract the environment with powerful two-dimensional spatial query analysis, statistics, plotting and other functions. The two-dimensional GIS plotting is used in military operations command system. The fact and synergy are not well reflected. It is obvious that the traditional two-dimensional GIS plotting application is not effective in visual expression, but two-dimensional GIS can not be used. It gives people a sense of reality and stereoscopic sense, thus promoting the continuous exploration of the three-dimensional GIS[2]. The three-dimensional GIS is closer to the human visual habits and shows more spatial relations, which makes up many defects of the two-dimensional GIS itself. However, at present, the research and application of 3D GIS in our country are still in the initial stage of development, and the foreign countries have already introduced it. Several more mature technology and more widely used 3D GIS platforms, such as Google Earth, NASA World Wind, Skyline, ERSI ArcGlobl and so on. However, the plotting on these platforms is still in the application of simple plotting, and the application of the complex standard plotting is very few. The two or three dimension standard is the problem of the data management and data sharing in the space information. The synergetic and interactive representation of the painting is still poor [3].
Looking at the application of two or three dimensional mapping, the following problems are also found:
1) the two or three dimension does not build a unified plotting icon library.
2) lack of Collaborative Plotting, lack of plotting analysis and processing functions.
3) the algorithm for 3D mapping of terrain matching needs to be improved.
4) poor two or three dimensional linkage.
In view of the above shortcomings, the innovation of this paper is put forward, that is, a two or three dimensional linkage arrows plotting method using data sharing and coordination model.
1) it mainly uses data as the core architecture to realize data sharing and exchange among multiple systems. HGML[4] can achieve mass, storage, organization and scheduling of heterogeneous data through the G/S model.
2) a collaborative model based on HGML in order to achieve two dimensional collaborative functions.
3) two or three dimensional linkage based on collaborative model, so as to realize two dimensional collaborative Collaborative Plotting.
The main contents of this paper are as follows:
1) design a plotting symbol library based on HGML, and can draw the symbol library in real time in 2D and 3D scenes to mark the arrow marks in real time.
In this paper, the unified data exchange standard (HGML) is used to manage the vector and other spatial information data in a unified way to realize the plotting Library of multiple arrows, multiple arrows, and extensible magnification functions. The construction process of two-dimensional irregular arrow marks is introduced mainly by the "inlay" and "swallow tail" arrow marks. Using the Flex plug-in to call the plotted symbol library to realize the plotting of the two-dimensional arrow mark. In the study of 3D arrow plotting, the drawing principle of 3D arrow marks is introduced first, and then the 3D model plotting symbols, the 3D rule vector plotting symbols, and the 3D irregular plotting symbols are introduced, and the 3D model plotting symbols and three are respectively introduced. Terrain matching of irregular plotted symbols.
2) build a two or three dimensional collaborative model based on HGML.
HGML, based on the XML based data registration and data exchange mechanism, can effectively solve the bottleneck problems of storage management, service response, network bandwidth, information expression, operation control, technology and analysis through mass data management and client aggregation service mechanism under the cloud service. Thus, a two or three dimension collaborative model based on HGML is constructed. It can effectively solve the coordination problem of two 3D plotting. The two or three dimensional collaborative model based on HGML mainly includes cooperative management, HGML file storage and analysis, conference management, protocol, cooperative service and collaborative interaction, and each module is indispensable to ensure the real-time, timeliness and correctness of the Collaborative Plotting.
3) build a two or three dimensional linkage communication framework based on collaborative model.
The construction of the two or three dimensional linkage framework combines the collaborative model, message conversion and push technology, and it is mainly divided into six processes: request, collaboration, processing, message conversion, push, and data display. Through the framework of two or three dimensional linkage communication based on collaborative model, the communication between two dimensional GIS and two three-dimensional linkage server and the interaction of 3D GIS and two or three dimension are realized. The communication of the server.
4) build a two or three dimensional linkage plotting display framework based on collaborative model.
The two or three dimensional linkage mapping and display architecture based on collaborative model mainly consists of collaborative model, plotting tag library, information analysis and processing, operation control, 3D display and two-dimensional display, input and output modules. Based on the collaborative model, the two or three dimension linkage plotting led by two-dimensional scene and the two or three dimension of 3D scene led by 3D scene are realized. Dynamic plotting is mainly manifested in the three dimensional scene when plotting, the arrow symbol can be synchronized in the same latitude and longitude position in the two-dimensional scene, and vice versa.
Through the above investigation and research, this paper constructs a multi terminal collaboration model based on HGML, and realizes the two or three dimensional linkage plotting of multi terminal collaboration using the model.
1) using conference mode and HGML technology, combined with collaborative principle and technical background, a multi terminal collaboration model based on HGML is constructed.
2) through the combination of the two or three dimensional linkage communication model and the multi terminal cooperative model, the two or three dimension linkage display module based on the multi terminal cooperative model is constructed, which realizes the two or three dimensional linkage mapping of the two-dimensional scene and the two or three dimensional linkage plotting led by the 3D scene.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P208
【参考文献】
相关期刊论文 前10条
1 张艳;;基于Web Service实现电子政务异构系统的数据交换和共享[J];办公自动化;2003年06期
2 关峰;刘浩;曹巍;;灾害可视化系统中的二三维联动技术研究[J];测绘科学;2012年03期
3 张建兵;任应超;许允波;赵彦庆;;网格环境下分布式实时协同标绘系统[J];地球信息科学学报;2012年02期
4 刘耀龙;张书娟;胡蓓蓓;叶明武;;GIS空间分析在流域生态规划研究中的应用[J];资源环境与发展;2010年02期
5 李立夏;夏学知;涂葵;;舰载指控中协同态势标绘系统的研究与设计[J];计算机工程;2010年16期
6 张俊升,李庆华;地图协同标绘感知系统的设计与实现[J];计算机应用;2004年06期
7 马芳芳;;基于XML的态势图协同标绘系统设计与实现[J];计算机与数字工程;2011年12期
8 郭曦榕;苗放;王华军;许义兴;;空间信息G/S网络访问模式体系架构初探[J];计算机应用与软件;2009年10期
9 李欣;杜震洪;张丰;刘仁义;刘南;;基于BlazeDS消息推送的WebGIS系统设计与实现[J];计算机应用与软件;2012年08期
10 周树语,许小艳,刘然;基于GIS的分布式实时协同制图系统的研究[J];计算机工程与设计;2005年01期
相关博士学位论文 前7条
1 宁安良;面向3G终端的移动地理信息服务研究[D];中国海洋大学;2010年
2 刘斌;基于G/S模式的非物质文化遗产异构数据可视化共享机制研究与实现[D];成都理工大学;2011年
3 张建兵;基于网格的空间信息服务关键技术研究[D];中国科学院研究生院(遥感应用研究所);2006年
4 郭曦榕;基于G/S模式的数字旅游工程及其评估技术研究[D];成都理工大学;2010年
5 李圣文;面向空间信息的Web协同关键技术研究[D];中国地质大学;2010年
6 屈力刚;基于MAS的网络化三维协同设计研究[D];东北大学;2007年
7 冷小鹏;基于G/S模式的三维地质灾害信息管理平台研究[D];成都理工大学;2012年
相关硕士学位论文 前10条
1 周圣川;面向虚拟城市的三维空间数据引擎设计与实现[D];中国海洋大学;2011年
2 单东辉;基于数据库共享的协同标绘技术研究[D];解放军信息工程大学;2009年
3 聂浩;基于Flex技术的水轮机组在线监测系统研究与开发[D];华中科技大学;2011年
4 韩立森;基于Web服务GIS的研究与实现[D];华北电力大学(河北);2004年
5 郑观升;基于Web的河南建筑劳务管理系统的设计[D];电子科技大学;2005年
6 王宇;火力发电厂三维地理信息系统设计与实现[D];电子科技大学;2005年
7 肖奇伟;空间环境建模中地图符号设计与标绘技术研究[D];国防科学技术大学;2004年
8 孔维;三维非规则军队标号的研究与实现[D];中国人民解放军信息工程大学;2005年
9 杨强;三维军标生成与态势标绘技术研究[D];国防科学技术大学;2006年
10 张宜民;基于Web服务的证券电子商务研究与应用[D];吉林大学;2007年
本文编号:2040023
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2040023.html