基于对象的高分辨率遥感影像土地利用变化检测技术研究
[Abstract]:With the rapid development of modern society and economy, the development of land resources is becoming faster and faster. The change of land use is characterized by small period of change, wide range and slow renewal. Remote sensing technology with fast data acquisition, wide coverage and low manual workload is the best method for change detection. On the one hand, the high resolution remote sensing image improves the precision of extracting remote sensing image information; on the other hand, the request of remote sensing image processing technology is also higher. It is very important to optimize the processing technology of high resolution remote sensing image for land use change detection. In this paper, the object oriented technology is used to detect land use change. Two major problems, how to choose the best segmentation scale in the process of object oriented image processing and how to use object features to realize classification, are studied in detail. First of all, this paper presents an evaluation index and a computational model of the optimal segmentation scale, and the validity of the evaluation index and the computational model is proved by experiments. The evaluation index includes the homogeneity index within the object and the heterogeneity index between the objects. The homogeneity index is calculated by using the standard deviation of the object, the area and the total number of partitioned objects, while the heterogeneity index is calculated by using the total variation of the neighborhood on the boundary of the object. The optimal partition scale model is a nonlinear regression model based on mathematical statistics to analyze the experimental data. Secondly, aiming at the classification problem after image segmentation, this paper designs the land type feature-rule base, and stores and manages the main object features and classification rules of land type effectively. Thus provides the dynamic classification rule link for the land classification. By combining the fuzzy logic classification method with the decision tree classification method, the classification rules can make clear fuzzy rules for the ground classification. The optimal selection of features is based on the information quantity and correlation of the feature set counted by the information theory method to select the feature set that contains the largest amount of information. Finally, the paper makes comprehensive use of the above methods to carry on the land use change detection experiment, for the typical land type, carries on the best partition scale calculation, the feature optimized combination and the classification rule formulation, and has established the characteristic rule base example. In this paper, the image data of different periods are segmented according to the best segmentation scale, the classification rules are classified, and the classification results are compared and analyzed. Finally, the change information of land use type is obtained. The experimental results show that the proposed method is effective and practical.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F301;P237
【参考文献】
相关期刊论文 前10条
1 张俊;朱国龙;李妍;;面向对象高分辨率影像信息提取中的尺度效应及最优尺度研究[J];测绘科学;2011年02期
2 何敏;张文君;王卫红;;面向对象的最优分割尺度计算模型[J];大地测量与地球动力学;2009年01期
3 刘小平,彭晓鹃,艾彬;像元信息分解和决策树相结合的影像分类方法[J];地理与地理信息科学;2004年06期
4 刘雯;骆剑承;钟秋海;沈占锋;徐宪立;;基于特征基元的高分辨率遥感影像城市空间信息提取[J];地理与地理信息科学;2007年04期
5 刘峰;龚健雅;;一种基于多特征的高光谱遥感图像分类方法[J];地理与地理信息科学;2009年03期
6 胡文亮;赵萍;董张玉;;一种改进的遥感影像面向对象最优分割尺度计算模型[J];地理与地理信息科学;2010年06期
7 明冬萍;骆剑承;周成虎;王晶;;高分辨率遥感影像特征分割及算法评价分析[J];地球信息科学;2006年01期
8 侯伟;鲁学军;张春晓;王静;;面向对象的高分辨率影像信息提取方法研究——以四川理县居民地提取为例[J];地球信息科学学报;2010年01期
9 赵宇鸾;林爱文;;基于面向对象和多尺度影像分割技术的城市用地分类研究——以武汉市城市中心区为例[J];国土资源科技管理;2008年05期
10 李雪;舒宁;刘小利;;基于序贯决策融合的变化检测方法研究[J];长江科学院院报;2012年11期
相关博士学位论文 前8条
1 祝锦霞;高分辨率遥感影像变化检测的关键技术研究[D];浙江大学;2011年
2 黄慧萍;面向对象影像分析中的尺度问题研究[D];中国科学院研究生院(遥感应用研究所);2003年
3 李向军;遥感土地利用变化检测方法探讨[D];中国科学院研究生院(遥感应用研究所);2006年
4 刘华文;基于信息熵的特征选择算法研究[D];吉林大学;2010年
5 吴剑;基于面向对象技术的遥感震害信息提取与评价方法研究[D];武汉大学;2010年
6 张汉松;基于对象的海岸带地物变化遥感检测技术的研究[D];浙江大学;2010年
7 高伟;基于特征知识库的遥感信息提取技术研究[D];中国地质大学;2010年
8 王琰;基于像斑统计分析的高分辨率遥感影像土地利用/覆盖变化检测方法研究[D];武汉大学;2012年
相关硕士学位论文 前2条
1 闫凯;人脸识别中基于TV模型的光照不变量提取[D];西安电子科技大学;2011年
2 吴秀芸;基于高分辨率遥感影像的建筑物提取及轮廓矢量化研究[D];南京大学;2011年
,本文编号:2143900
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2143900.html