LiDAR结合高分辨率影像的城市不透水地表提取研究
[Abstract]:The large-scale impermeable surface expansion brought about by urbanization has an important impact on the urban ecological environment, which makes the original water permeable and good natural resources become non permeable construction land. The increase of urban water permeable surface will aggravate the pollution of urban water resources and reduce the vegetation, and make the city face serious ecological environment problems. Urban water permeable surface is not only an important indicator to measure the degree of urbanization, but also one of the key technical indicators to measure urban environmental change and social and economic development. Accurate and effective extraction of urban water permeable surface information has a certain guiding role for urban sustainable development and planning. It is one of the hot and difficult points in the field of remote sensing to classify the detailed objects and extract the impermeable surface. In this paper, a development area in Hengyang, Hunan province is taken as the research area, and the airborne LiDAR data combined with high resolution image data is combined together, and the object oriented method is adopted. The classification results of the unpermeable surface information of the urban area are extracted and used in the classification of the single image data and the multi source data, and the comparative evaluation and analysis are carried out to complete the detailed classification of the urban land types with high precision. The fine classification and extraction of the information of the urban water permeable surface is realized, and the high precision and the water surface is not permeable to the surface. Remote sensing estimation provides a new idea and method. The innovation of this paper is: combining LiDAR and high resolution aerial images to complete the detailed classification of urban ground information. Under the limited conditions of RGB image, a new algorithm is used to complete the extraction of the type of the surface related to the surface of the impervious surface; combined with LiDAR and high resolution aviation The main conclusions of this paper are as follows: (1) the main conclusions are as follows: (1) the object oriented analysis technology is introduced, and the image segmentation algorithm and fuzzy mathematical classification are discussed in detail. Methods. The theory and method of multi scale segmentation algorithm are summarized, and the selected methods of the segmentation parameters are discussed in detail. Secondly, the fuzzy classification theory is introduced, and the fuzzy classification rules and classification systems are expounded on this basis. (2) the high resolution aerial images of R, G and B in the research area are constructed. Supervised classification workflow and classification system. Multi-scale segmentation is the key of object oriented technology and classification premise, so this paper divides the image into multi scale before all the classification steps, and finds the segmentation parameters suitable for various types of city objects. Finally, according to the supervised classification rules and methods, the detailed classification of the urban area is obtained. The results and impermeable surface. (3) establish a set of technical process, classification system and rules for urban water permeable surface information extraction, integrated LiDAR data and two kinds of data sources obtained by the same machine to extract the water surface of the urban area, and use the fuzzy classification method to create a method for extracting the water surface of the city. The results are evaluated and analyzed by the best classification results and the obfuscation matrix accuracy verification method. The results show that the method can obtain more satisfactory surface information of the complex terrain in urban areas. (4) the multi source data coordination method can improve the image classification accuracy. The two forms are combined with the single aerial image and the image and LiDAR data. Taking the urban impervious surface and evaluating the accuracy of the classification results of the two, it is found that the multi source data can be optimized by the advantages of the data in the extraction of the impervious surface and make the classification results optimized. At the same time, using the method of combining the characteristics of the two data, the detailed and appropriate points are put forward for the special objects such as the bare land, such as the bare land. Class method and feature reference, and get more accurate classification results.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 王娟;廖静娟;沈国状;许涛;;基于面向对象技术的鄱阳湖湿地地物分类研究[J];遥感技术与应用;2016年03期
2 程效军;程小龙;胡敏捷;郭王;张立朔;;融合航空影像和LIDAR点云的建筑物探测及轮廓提取[J];中国激光;2016年05期
3 张莹;;遥感影像监督分类和非监督分类方法探讨[J];黑龙江科技信息;2016年02期
4 陈帮乾;李香萍;肖向明;孙瑞;吴志祥;祁栋灵;杨川;陶忠良;;基于PALSAR雷达数据与多时相TM/ETM+影像的海南岛土地利用分类研究[J];热带作物学报;2015年12期
5 崔耀平;刘纪远;秦耀辰;董金玮;路婧琦;张帅帅;;北京城市扩展对热岛效应的影响[J];生态学杂志;2015年12期
6 查力;宫辉力;胡卓玮;杜红悦;;高分影像水体信息提取对比研究[J];首都师范大学学报(自然科学版);2015年04期
7 崔秋洋;潘云;杨雪;;基于Landsat 8遥感影像的北京市平原区不透水层盖度估算[J];首都师范大学学报(自然科学版);2015年02期
8 许传阳;李建红;;高分辨率遥感影像结合LiDAR数据的面向对象分类方法[J];河南理工大学学报(自然科学版);2015年02期
9 王露;刘庆元;;高分辨率遥感影像多尺度分割中最优尺度选取方法综述[J];测绘与空间地理信息;2015年03期
10 王建强;徐招星;谭金石;;影像辅助LiDAR点云的地物提取方法研究[J];丽水学院学报;2015年02期
相关博士学位论文 前2条
1 董保根;机载LiDAR点云与遥感影像融合的地物分类技术研究[D];解放军信息工程大学;2013年
2 费鲜芸;高分辨率遥感影像在城市绿地信息提取中的应用研究[D];山东农业大学;2006年
相关硕士学位论文 前10条
1 孙宇翼;基于对象影像分析的多源遥感影像湿地信息提取方法及其尺度效应研究[D];兰州大学;2016年
2 曹密媛;基于遥感影像的地物要素智能识别与提取研究[D];长安大学;2015年
3 宋毅;基于Landsat影像的滇池流域不透水面变化与城市热岛效应关系研究[D];云南师范大学;2014年
4 成丽;基于SPOT5遥感影像面向对象分割分类研究和应用[D];南京林业大学;2014年
5 曾小箕;面向对象的高分一号影像信息提取技术研究[D];新疆大学;2014年
6 杜斌;基于面向对象的高分辨率遥感影像水体信息提取优势研究[D];云南师范大学;2014年
7 黄厚圣;地面三维激光扫描技术在文物保护中的应用研究[D];长安大学;2014年
8 詹福雷;基于面向对象的高分辨率遥感影像信息提取[D];吉林大学;2014年
9 李艳桦;面向对象的遥感影像分割与分类方法研究[D];郑州大学;2014年
10 杨华杰;基于Landsat遥感数据的杭州不透水地面提取与分析[D];浙江大学;2013年
,本文编号:2145791
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2145791.html