基于流形学习的高分辨率SAR影像城市地物特征提取方法研究
[Abstract]:Synthetic aperture radar (SAR) can wear cloud permeable fog, and has the unique advantage of all-weather all weather monitoring. It can make up for the defect that optical sensor can not obtain effective data in the cloudy and fog area. It has become an important means of remote sensing information extraction. With the launching of high SAR satellite, the city typical ground extraction has become a high grade SAR Hot spots provide sustainable scientific basic data for urban planning, land use monitoring, population density survey and so on. Due to the complex scattering characteristics of high resolution SAR images, the accuracy of typical terrain extraction based on high resolution SAR data is not high. At the same time, high dimensional nonlinear characteristics of high resolution SAR images make cities The difficulty of automatic extraction of typical objects is more difficult. Manifold learning, as a new method of machine learning, can discover the intrinsic characteristics of high dimensional spatial data. The manifold learning method, which is good at dealing with nonlinear data, is applied to the feature extraction of high resolution SAR images, which is helpful to improve the accuracy of target recognition. Therefore, to improve the city code The automatic extraction technology of typical ground objects is studied and the method of extracting and identifying the typical features of the city based on the manifold learning method is studied in this paper. The main research contents are as follows: (1) the characteristics of the city canonical features of high resolution SAR images are analyzed and the high vate collection is constructed. First, the SAR feature collection is constructed. The high resolution SAR images are analyzed in detail. Secondly, 8 texture features are extracted by the classical two order probability statistical method of Gray Level Co-occurrence Matrix (GLCM), and the high Vitter collection of the SAR image is constructed with the gray features of the image. Finally, through the experimental analysis, the optimum window parameters for texture feature extraction are determined. (2) select Laplasse Eigenmap (LE), local linear embedding (Locally Linear Embedding, LLE), Hessian local linear embedding algorithm (Hessian Locally Linear Embedding,), local tangent space arrangement Alignment, LTSA), Locality Preserving Projections (LPP), 5 typical manifold learning methods are used to reduce the dimension of the high Vette collection of three typical types of city objects (construction area, water body, stadium), and finally extract three types of ground objects, and evaluate the accuracy of the results extracted by the 5 methods. The advantages and disadvantages of the method. (3) to improve the Local Tangent Space Alignment (LTSA) method, to improve the uneven distribution of the high grade SAR data. Considering the Euclidean distance between the shape structure of the manifold and the neighborhood of the sample, a weighted improvement is made for the estimation of the tangent space of the original method, and a kind of distance and junction based on the distance and knot is proposed. The weighted local tangent spatial arrangement algorithm (Distance and Structure Weighting Local Tangent Space Alignment, DSWLTSA) is applied to the dimensionality reduction of high grade SAR image high vet collection. The validity of the algorithm is verified by comparison and analysis of DSWLTSA and LTSA calculations with 3 typical terrain objects. The applicability and application value of DSWLTSA algorithm are analyzed through experiments. (4) a LLE algorithm based on homogeneous sample distance (Distance Homogenization Locally Linear Embedding, DHLLE) is proposed for local linear embedding algorithm (Locally Linear Embedding, LLE), which is not good for sample sampling sparse results. The algorithm improves the problem by recalculating the distance between samples. The algorithm is applied to the dimensionality reduction of high SAR image high VAT collection. The recognition ability of LLE and DHLLE algorithm for typical urban terrain is verified, and the advantages and disadvantages of DHLLE algorithm and DSWLTSA algorithm are compared and analyzed.
【学位授予单位】:中国科学院大学(中国科学院遥感与数字地球研究所)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 刘欣;张继贤;赵争;马安东;王萍;;多特征加权融合的高分SAR影像建筑区提取方法[J];测绘科学;2016年04期
2 肖红光;文俊;陈立福;史长琼;;一种新的高分辨率SAR图像道路提取算法[J];计算机工程与应用;2016年15期
3 李雪薇;郭艺友;方涛;;基于对象的合成孔径雷达影像极化分解方法[J];计算机应用;2014年05期
4 李世伟;王召巴;杨建生;;基于遥感的城市典型地物信息的快速获取方法[J];计算机工程与设计;2014年03期
5 张红;叶曦;王超;张波;吴樊;汤益先;;面向对象的高分辨率SAR图像处理及应用[J];中国图象图形学报;2014年03期
6 赵凌君;谭熙;匡纲要;;基于变差函数模型拟合的城区SAR图像分类新方法[J];现代雷达;2014年02期
7 余洁;刘振宇;燕琴;杨杰;;结合统计和形状特征的高分辨率SAR影像道路网提取[J];武汉大学学报(信息科学版);2013年11期
8 徐佳;陈媛媛;黄其欢;何秀凤;;综合灰度与纹理特征的高分辨率星载SAR图像建筑区提取方法研究[J];遥感技术与应用;2012年05期
9 王寿彪;杨桄;丁文东;张俭峰;;SAR图像目标识别特征提取与选择方法研究进展[J];科技情报开发与经济;2011年26期
10 刘雅轩;张小雷;雷军;朱磊;;新疆绿洲城市空间扩展特征及其驱动力分析[J];中国沙漠;2011年04期
相关博士学位论文 前7条
1 雷迎科;流形学习算法及其应用研究[D];中国科学技术大学;2011年
2 詹宇斌;流形学习理论与方法及其应用研究[D];国防科学技术大学;2011年
3 尹奎英;SAR图像处理及地面目标识别技术研究[D];西安电子科技大学;2011年
4 呙维;城市地区高分辨率SAR图像中典型地物的特征分析与解译[D];武汉大学;2010年
5 杨国鹏;基于机器学习方法的高光谱影像分类研究[D];解放军信息工程大学;2010年
6 王靖;流形学习的理论与方法研究[D];浙江大学;2006年
7 赵炳爱;基于小波分析的高分辨率雷达目标识别方法研究[D];哈尔滨工程大学;2003年
相关硕士学位论文 前7条
1 李雪薇;高分辨率SAR影像对象化的极化分解与特征描述研究[D];上海交通大学;2014年
2 孙晰锐;基于核学习的SAR图像分类算法研究[D];大连理工大学;2012年
3 贺峥嵘;极化SAR影像特征分析与地物目标分类研究[D];解放军信息工程大学;2011年
4 王涛;基于流形学习的SAR自动目标识别方法研究[D];电子科技大学;2010年
5 叶强;基于流形学习像素分布流的高光谱图像数据分割方法[D];西安电子科技大学;2010年
6 丘昌镇;高分辨率SAR图像目标分类特征提取与分析[D];国防科学技术大学;2009年
7 韩征;基于投影特征的SAR自动目标识别技术研究[D];中国民航大学;2009年
,本文编号:2160745
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2160745.html