GGOS对流层延迟产品精度分析及在PPP中的应用
[Abstract]:Tropospheric delay is the main error source for satellite navigation and positioning. GNSS wide area enhancement requires high accuracy tropospheric delay products for error correction. The tropospheric delay can be estimated in real time by GNSS, and the global tropospheric zenith delay product released by GNSS can also be obtained by using the numerical weather forecast model with multi-source data, and the global tropospheric zenith delay product can be calculated by GNSS. Its accuracy can reach 4 mm, time resolution is 5 min, but its distribution is uneven. There is no data coverage. GGOS Atmosphere is based on ECMWF 40 years reanalysis data. The global zenith tropospheric total delay grid data with a temporal resolution of 6 h and a spatial resolution of 2.5 掳脳 2 掳since 1979 can be provided. Based on the ZTD data of global IGS station in 2015, this paper evaluates the ZTD products of GGOS, and studies the system difference between GGOS Atmosphere tropospheric delay products and ZTD data released by IGS. The differential coefficients of GGOS-ZTD and IGSZTD system (including proportional error a and fixed error b),) are estimated by linear fitting. Then the spherical harmonic expansion of proportional error a and fixed error b is carried out, and the system difference model between two kinds of ZTD data sources is established. IGS stations and land-based network stations are selected to study the effect of the GGOSZTD product after the correction of the additional system deviation on the convergence rate of the PPP. The results show that there is a systematic deviation between IGS-ZTD and GGOS-ZTD, the average bias is -0.54 cm, and the average RMS between the two is 1.31 cm, which indicates that the GGOS-ZTD product can meet the needs of GNSS navigation users for tropospheric delay correction. The GGOS-ZTD product, which has been corrected, is used in the PPP test of the pan station and the YNMH station. It is found that the convergence rate of the positioning can be improved obviously, especially in the U direction, and the convergence rate is increased by 10.58%, 31.68%, 43.89%, 51.46%, 14.69% and 18.40%, respectively, in the direction of U, and the following results are obtained: (1) in the direction of U, the speed of convergence is 10.58%, especially in the direction of U, the convergent speed is increased by 10.58% and 31.68%, respectively, and the speed of convergence is increased by 51.46% and 14.69%.
【作者单位】: 武汉大学测绘学院;
【分类号】:P228.4
【相似文献】
相关期刊论文 前10条
1 陈中新;朱丽强;;区域气象特征对流层延迟模型的建设研究[J];城市勘测;2010年04期
2 戴吾蛟;陈招华;匡翠林;蔡昌盛;;区域精密对流层延迟建模[J];武汉大学学报(信息科学版);2011年04期
3 朱爽;姚宜斌;张瑞;;天顶对流层延迟计算方法研究[J];大地测量与地球动力学;2011年03期
4 任婷;曲国庆;张华荣;袁兴明;;基于小波相关性的对流层延迟改正数据分析[J];山东理工大学学报(自然科学版);2012年04期
5 赵庆志;张书毕;;基于反投影方法的对流层延迟三维层析研究[J];大地测量与地球动力学;2013年04期
6 周淼;刘立龙;张腾旭;张朋飞;黄良珂;;综合时间序列与高程的天顶对流层延迟模型研究[J];城市勘测;2014年02期
7 徐杰;孟黎;任超;徐军;;对流层延迟改正中投影函数的研究[J];大地测量与地球动力学;2008年05期
8 孙晓;张立辉;王勇;杨晶;;利用多元回归方法改正对流层延迟插值误差[J];大地测量与地球动力学;2012年S1期
9 郑作亚,卢秀山,韩晓冬,宫维坤;利用多参数估计法解算对流层延迟[J];山东科技大学学报(自然科学版);2001年04期
10 赵佩铭;陈义;于松松;楼立志;;长三角区域对流层延迟简易模型的建立[J];全球定位系统;2012年06期
相关会议论文 前10条
1 白志强;刘岩;饶才杰;吕达;;一种对流层延迟模型误差改正的实现方法[A];第四届中国卫星导航学术年会论文集-S8卫星导航模型与方法[C];2013年
2 王苗苗;李博峰;沈云中;楼立志;;全球对流层延迟产品评估及其在北斗导航中应用[A];第五届中国卫星导航学术年会论文集-S1 北斗/GNSS导航应用[C];2014年
3 骆金超;杨粉花;;浅谈对流层对GPS定位的影响[A];江苏省测绘学会2007'学术年会论文集[C];2008年
4 汪登辉;高成发;潘树国;;基于网络RTK的对流层延迟分析与建模[A];第三届中国卫星导航学术年会电子文集——S08卫星导航模型与方法[C];2012年
5 钟萍;黄丁发;袁林果;丁晓利;;超高层建筑物GPS动态变形监测中对流层效应影响研究[A];第一届中国卫星导航学术年会论文集(下)[C];2010年
6 张伟;许爱华;苏睿;;运载火箭GPS弹道确定中的区域对流层延迟修正模型[A];第五届中国卫星导航学术年会论文集-S8 卫星导航模型与方法[C];2014年
7 宋淑丽;朱文耀;陈钦明;赵静e,
本文编号:2180266
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2180266.html