多源动态异构空间标绘内容整合研究
发布时间:2018-09-12 18:20
【摘要】:为使复杂的海量多源空间标绘内容规范化、标准化,确保标绘内容的正确性,亟需对空间标绘内容进行整合。针对多源异构空间标绘信息中存在的同标异物、异标同物等情况,分析不同应用类型标绘数据的自身特点,以最大限度地消除差异性为标准,采用粗糙集理论对信息进行分类,通过建立语义本体库进行源数据分析、提取和转换等工作,建立数据整合标准与质量控制体系,突破数据源之间标准的差异以及异常数据的限制,实现了多源标绘内容的自动/半自动整合。以全球地名数据为例,随机选取4组实验数据进行属性约简和规则提取,并对相关数据进行整合。实验结果表明,算法可行性强,数据整合流程具备高效性,能够应用于大数据集的分类。
[Abstract]:In order to standardize and standardize the complex multi-source spatial plotting content and ensure the correctness of the plotting content, it is urgent to integrate the spatial plotting content. Aiming at the same standard foreign body and different standard same object in the multi-source and heterogeneous space plotting information, this paper analyzes the characteristics of the different types of plotting data and classifies the information by rough set theory based on the criterion of eliminating the difference to the maximum extent. Through the establishment of semantic ontology library for source data analysis, extraction and transformation, data integration standards and quality control system are established to break through the differences between the standards of data sources and the limitation of abnormal data. The automatic / semi-automatic integration of multi-source plotting content is realized. Taking global toponymic data as an example, four groups of experimental data were randomly selected for attribute reduction and rule extraction, and related data were integrated. The experimental results show that the algorithm is feasible and the data integration process is efficient and can be applied to the classification of big data set.
【作者单位】: 北京航天泰坦科技股份有限公司;中国地质大学(北京)土地科学技术学院;
【基金】:国家863计划项目“星机地综合定量遥感系统与应用示范”(编号:2013AA12A303)和“全球海量空间信息更新关联与主动服务系统”(编号:2013AA12A402)共同资助
【分类号】:P209
本文编号:2239852
[Abstract]:In order to standardize and standardize the complex multi-source spatial plotting content and ensure the correctness of the plotting content, it is urgent to integrate the spatial plotting content. Aiming at the same standard foreign body and different standard same object in the multi-source and heterogeneous space plotting information, this paper analyzes the characteristics of the different types of plotting data and classifies the information by rough set theory based on the criterion of eliminating the difference to the maximum extent. Through the establishment of semantic ontology library for source data analysis, extraction and transformation, data integration standards and quality control system are established to break through the differences between the standards of data sources and the limitation of abnormal data. The automatic / semi-automatic integration of multi-source plotting content is realized. Taking global toponymic data as an example, four groups of experimental data were randomly selected for attribute reduction and rule extraction, and related data were integrated. The experimental results show that the algorithm is feasible and the data integration process is efficient and can be applied to the classification of big data set.
【作者单位】: 北京航天泰坦科技股份有限公司;中国地质大学(北京)土地科学技术学院;
【基金】:国家863计划项目“星机地综合定量遥感系统与应用示范”(编号:2013AA12A303)和“全球海量空间信息更新关联与主动服务系统”(编号:2013AA12A402)共同资助
【分类号】:P209
【相似文献】
相关期刊论文 前1条
1 谢群;汪忠;;新加坡科学教材Science Adventure的特点及启示[J];浙江师范大学学报(自然科学版);2007年03期
相关重要报纸文章 前1条
1 CUBN记者 郭安丽;我国文化创业产业应加快内容整合[N];中国联合商报;2014年
,本文编号:2239852
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2239852.html