基于GPU的并行矢量数据分析与索引技术研究
[Abstract]:Vector data is one of the basic data structures of GIS. Compared with raster data, vector data has the advantages of less storage, higher precision of graphic display and more favorable to the analysis of topological relations. However, due to the complexity of its data structure, it is difficult to study the related operation methods for parallel access and processing of vector data. Especially, the unstructured feature of vector data is different from that of GPU using array structure to store data, so it is difficult to give full play to the advantage of high parallel execution of GPU multi-kernel. Therefore, this paper will systematically study the vector data access operation method based on GPU, programming architecture, data structure, efficient parallel spatial analysis algorithm and spatial index, and so on. In order to adapt to the programming characteristics that GPU can not dynamically allocate storage space by using kernel program, it can only rely on limited bus bandwidth to send and receive data from CPU. This paper takes the CSV format file as an example. A parallel computing framework for vector data is designed and implemented. The main idea is to preprocess the spatial data at the CPU end, then allocate the storage space of the GPU terminal according to the geometric coordinate size of the spatial object, and copy to the GPU terminal one by one with the spatial object as the unit. In this paper, a spatial analysis method based on GPU is constructed with the idea of hierarchical design. It includes four parts: storage, spatial operator, access strategy and spatial analysis operation. The method has good scalability. When one layer changes, other layers can be implemented only with small modifications, thus reducing the degree of coupling among the functional modules. In this paper, based on the analysis of the parallelism of spatial data sequencing and spatial relation analysis, the parallel processing problem of spatial data for GPU stream processor is analyzed, and the typical superposition analysis is used. Static R- tree spatial indexing algorithm is used as an example, and a new data structure and related algorithms are proposed. Strategies such as maximizing parallel execution and optimizing memory usage are adopted to improve the performance of spatial data analysis and to provide reference for the optimization of other parallel spatial analysis methods. The experimental results show that compared with the traditional algorithm based on CPU, the algorithm based on GPU can get a better speedup in general computing environment.
【学位授予单位】:中国科学院研究生院(东北地理与农业生态研究所)
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP391.41;P208
【参考文献】
相关期刊论文 前10条
1 梁浩;吴敏君;;两类典型GIS空间索引技术的分析与评价[J];安阳工学院学报;2006年02期
2 孔云峰;秦耀辰;乔家君;秦奋;;高校地理学科空间分析课程设置研究[J];测绘科学;2007年03期
3 史文中,郭薇,彭奕彰;一种面向地理信息系统的空间索引方法[J];测绘学报;2001年02期
4 阎超德,赵学胜;GIS空间索引方法述评[J];地理与地理信息科学;2004年04期
5 张传明;潘懋;;基于格网索引的GIS矢量数据拓扑重建研究[J];地理与地理信息科学;2006年04期
6 谢忠;叶梓;吴亮;;简单要素模型下多边形叠置分析算法[J];地理与地理信息科学;2007年03期
7 赵园春;李成名;赵春宇;;基于R树的分布式并行空间索引机制研究[J];地理与地理信息科学;2007年06期
8 王结臣;王豹;胡玮;张辉;;并行空间分析算法研究进展及评述[J];地理与地理信息科学;2011年06期
9 陈彦光;罗静;;地学计算的研究进展与问题分析[J];地理科学进展;2009年04期
10 赵斯思;周成虎;;GPU加速的多边形叠加分析[J];地理科学进展;2013年01期
相关博士学位论文 前10条
1 张泽宝;空间数据库的索引技术研究[D];哈尔滨工程大学;2009年
2 刘润涛;基于序的空间数据索引及查询算法研究[D];哈尔滨理工大学;2009年
3 龙柏;并行计算平台上的数据索引技术研究[D];中国科学技术大学;2011年
4 马安国;高效能GPGPU体系结构关键技术研究[D];国防科学技术大学;2011年
5 唐滔;面向CPU-GPU异构并行系统的编程模型与编译优化关键技术研究[D];国防科学技术大学;2012年
6 黄健美;高维数据索引及其查询处理技术研究[D];东北大学;2009年
7 谢炯;无缝时空的多域集成时空数据模型研究[D];浙江大学;2005年
8 林伟华;多重近似空间索引及其相关检索技术研究[D];华中科技大学;2009年
9 白洪涛;基于GPU的高性能并行算法研究[D];吉林大学;2010年
10 邓亚丹;面向共享Cache多核处理器的数据库查询执行优化技术研究[D];国防科学技术大学;2009年
本文编号:2245891
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2245891.html