顾及空间分异性的回归模型研究
[Abstract]:Because geographical entities have spatial correlation and spatial heterogeneity widely, but the traditional regression model is global, it is assumed that there is no correlation and spatial heterogeneity among geographical entities, so the fitting accuracy is low. Taking housing price as an example, this paper analyzes the spatial autocorrelation and spatial heterogeneity of housing price data by means of exploratory spatial data analysis, and discusses its space-time evolution characteristics. Aiming at the problems existing in the traditional spatial autoregressive model, the spatial autoregressive model with the distance weight matrix instead of the spatial adjacent matrix is tried and experimented, which provides a new direction for the weight selection of the spatial autoregressive model. Then, a geo-weighted autoregressive model which takes spatial correlation and heterogeneity into account is put forward. On the basis of this, time factor is brought into the model, and space-time geo-weighted regression model is introduced into the regression model of housing price data. Thus, the spatial heterogeneity and temporal characteristics of spatial entities are solved. The main research contents and results are as follows: (1) aiming at the spatial autocorrelation and spatial heterogeneity of geographical entities, this paper uses the global Moran index to measure the degree of autocorrelation. The autocorrelation model of local data is explored by using local Moran index, and then the spatial heterogeneity of geographical entities is tested by semi-variable function. (2) the spatial weight matrix based on distance reciprocal and Gao Si kernel function is taken as an example in this paper. The possibility of distance weight matrix replacing spatial adjacent matrix is studied. Compared with the traditional spatial autoregressive model, the autoregressive model based on the reciprocal spatial weight matrix of distance and the autoregressive model based on Gao Si weight matrix improve the fitting accuracy by 0.08 and 0.11 respectively. (3) the spatial autocorrelation is proposed. And spatial heterogeneity, a geo-weighted autoregressive model, The autoregressive term is added on the basis of the traditional geographical weighted model. The main contents include the two-step least square estimation of the model and the selection of optimal spatial bandwidth by CV method. Compared with the traditional spatial autoregressive model and geo-weighted regression model, the fitting accuracy is improved by 0.16 and 0.07. (4) the time factor is added to the geo-weighted regression model, and the spatio-temporal geo-weighted regression model is constructed. The main processes are the establishment of space-time kernel function and the selection of space-time factors. The analysis of variance, regression coefficient and goodness of fit of experimental results are carried out. The experimental results show that the space-time geographical weighted regression model has the best performance in terms of sum of square of residuals, mean square error and goodness of fit.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P208
【参考文献】
相关期刊论文 前10条
1 郑晓燕;周鹏;;武汉市房价的空间分布格局及其影响因素分析[J];国土与自然资源研究;2016年02期
2 郭双;魏传华;;空间自回归模型的变量选择[J];中央民族大学学报(自然科学版);2015年03期
3 孙倩;汤放华;;基于空间扩展模型和地理加权回归模型的城市住房价格空间分异比较[J];地理研究;2015年07期
4 高丽群;;时空地理加权回归模型的拟合分析[J];哈尔滨师范大学自然科学学报;2015年03期
5 王新刚;孔云峰;;城市住房价格局部线性地理加权回归分析——以湖北省黄石市为例[J];中国土地科学;2015年03期
6 张俊峰;张安录;;武汉城市圈土地资源空间异质性及其效应分析[J];农业现代化研究;2014年04期
7 陈绍宽;韦伟;毛保华;关伟;;基于改进时空Moran’s I指数的道路交通状态特征分析[J];物理学报;2013年14期
8 李春红;张可娟;文利霞;;基于空间自回归模型的中部经济增长分析[J];西南大学学报(自然科学版);2012年11期
9 兰峰;张媛;;商品住宅价格上涨的空间自回归模型及其实证[J];统计与决策;2012年13期
10 魏传华;胡晶;吴喜之;;空间自相关地理加权回归模型的估计[J];数学的实践与认识;2010年22期
相关博士学位论文 前5条
1 曾晖;城市住宅价格时空分布规律研究[D];南京林业大学;2012年
2 黄砚玲;地理加权空间经济计量模型的GMM估计及区域金融发展收敛性实证研究[D];华南理工大学;2012年
3 张娟锋;住宅价格与土地价格的城市间差异及其决定因素研究[D];浙江大学;2008年
4 覃文忠;地理加权回归基本理论与应用研究[D];同济大学;2007年
5 温海珍;城市住宅的特征价格:理论分析与实证研究[D];浙江大学;2004年
相关硕士学位论文 前4条
1 李琪;时空加权回归模型的参数估计及其应用研究[D];兰州理工大学;2014年
2 施雅娟;基于空间Durbin模型的城市住宅特征价格研究[D];浙江大学;2013年
3 张可娟;空间自回归模型的研究与应用[D];广西大学;2012年
4 董智勇;深圳住宅价格影响因素实证研究[D];浙江大学;2006年
,本文编号:2260762
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2260762.html