成像目标虚拟圆特征及其应用
[Abstract]:The extraction of affine invariant features is a key step in imaging based target recognition and localization applications, which directly affects the final effect of related applications. Supported by the National Natural Science Foundation of China "Research on ranging system and key Technologies based on Monocular Image and Direction" (608712136) and the Research on Virtual Circle Features of Imaging Target and its Application (2011JM8002) of Shaanxi Provincial Natural Science basic Research Project. In this paper, the target rotation invariant feature and its application are studied in depth, and the rotation invariant circle feature of the target is extended to virtual circle feature. Based on the summarization of the current techniques for extracting rotating invariant features and the characteristics of the invariants of various types of features, the concept of virtual circle based on multi-point features is proposed according to the inherent rotation invariance of circular objects. Five different types of virtual circles are constructed by using 3 pairs of matching points in adjacent images in image sequences and their performance is compared. Compared with the existing methods, this kind of feature is easy to extract and there is no need to attach complex constraints to the image matching points. The simulation results show that the diameter of the virtual circle based on the expansion of the equilateral triangle is the best feature of the line segment of the range correlation property. In the estimation of the target distance, when the inclination angle of the target relative to the camera is in the range of [-10 掳, 10 掳] at the adjacent sampling time, The range error of the above line segment is about 卤3%. In addition, the relative attitude change of the target between adjacent images is measured by using four matching point pairs. The measurement error is not more than 2.5 under one pixel noise, so it has good robustness and robustness.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP391.41;P23
【参考文献】
相关期刊论文 前10条
1 付小宁;刘上乾;申建华;;借助特征线度的飞机被动定位研究[J];电子测量与仪器学报;2005年04期
2 乔宇,黄席樾,柴毅,周欣;基于自适应直线拟合的角点检测[J];重庆大学学报(自然科学版);2003年02期
3 于勇;郭雷;;基于特征直线的目标被动定位方法[J];光电工程;2009年01期
4 于起峰,孙祥一,邱志强;从单站光测图像确定空间目标三维姿态[J];光学技术;2002年01期
5 邱志强,陆宏伟,于起峰;基于图像的三维刚体运动估计算法比较[J];光学技术;2004年01期
6 王荻;王洁;付小宁;;基于单目图像和方向的测距系统及性能分析[J];光子学报;2011年07期
7 张广军,周富强;基于双圆特征的无人机着陆位置姿态视觉测量方法[J];航空学报;2005年03期
8 于起峰;李强;雷志辉;尚洋;朱宪伟;刘晓春;;基于序列图像的无人机自测速方法与试验[J];航空学报;2009年08期
9 黄士科;夏涛;张天序;;基于红外图像的被动测距方法[J];红外与激光工程;2007年01期
10 朱宪伟;于起峰;;基于生物视觉的地面目标识别与跟踪锁定[J];红外与激光工程;2007年06期
相关博士学位论文 前3条
1 陈潇;图像目标三维几何不变量特征构造与应用[D];上海交通大学;2011年
2 陈涛;图像仿射不变特征提取方法研究[D];国防科学技术大学;2006年
3 曹健;基于局部特征的图像目标识别技术研究[D];北京理工大学;2010年
相关硕士学位论文 前4条
1 高文井;序列成像目标定位的DSP实现[D];西安电子科技大学;2011年
2 胡智勇;月球车导航中计算机视觉的应用[D];哈尔滨工业大学;2006年
3 郭煜;基于单目视觉的飞行器姿态角测量技术[D];国防科学技术大学;2010年
4 侯国强;基于配准算法的单目被动测距研究[D];西安电子科技大学;2012年
本文编号:2284322
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2284322.html