GPS用于地壳形变监测的数据处理研究
[Abstract]:GPS technology has been favored by many countries because of its high positioning accuracy and all-weather real-time observation. Due to the establishment of more GPS tracking stations, geoscientists improve the solution strategy and accuracy of GPS data processing software, and use GPS observation data to apply to various geoscience research work, such as earthquakes, volcanoes, ground fractures, etc. The crustal movement, such as tsunami, has been continuously observed by the GPS station for many years, and a large amount of data have been accumulated, which provides a rich data base for the analysis of regional crustal deformation. This paper describes the development history and accuracy of ITRF frame, compares the accuracy of each frame, makes a good calculation benchmark for GPS data processing, and probes into the mixed solutions of long and short baselines in different modes and their influence on coordinate accuracy. At the same time, the time series of GPS coordinates and the horizontal velocity field of Southern California region are obtained by using the GPS continuous observation data in Southern California. The main contents and progress of this paper are as follows: (1) this paper explores the impact of different frameworks on GPS sites, and ITRF is constantly refined over time. For the data of different periods, to unify the frame, the selection of the frame plays an important role in the data solution. (2) this paper explores the mixed solution of long and short baselines, and studies the solution strategy of baselines and the convergence of baselines. When the precision requirement is high, the GPS hybrid network in large area can not be solved with long or short baselines, so it is necessary to separate the network. (3) in this paper, the time series of this area are obtained by using the data of Southern California, and the trend items are removed by analyzing and processing. Through fast Fourier transform, the annual and semi-annual periodic terms are obtained. At the same time, spectral analysis shows that there are abnormal periodic signals deviating from 1.0cpy, which may be common mode errors. Surface load, GPS unmodeled error. (4) using Southern California data, the velocity field of this area under the ITRF2008 frame is obtained, the overall velocity is 47.3 degrees west-north, and the plate motion is deducted by using Euler vector formula. Obtained relative to the North American plate speed, the overall trend north-west 41.7 degrees. With unavco website provides the result, in the trend and the order of magnitude basically consistent, the result is reliable.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P228.4;P227
【参考文献】
相关期刊论文 前10条
1 姚顽强;陈卫南;李涛;高小明;陈巍;马飞;;卫星轨道和大气延迟误差联合校正的山地DEM提取[J];测绘科学;2016年08期
2 占伟;李斐;朱爽;张杰;;应用GPS连续观测修正流动观测垂向速率的分析与实验[J];武汉大学学报(信息科学版);2016年07期
3 周东旭;周兴华;张化疑;王朝阳;唐秋华;;利用GPS连续观测进行中国沿海验潮站地壳垂直形变分析[J];武汉大学学报(信息科学版);2016年04期
4 袁鹏;孙宏飞;秦昌威;张理想;;安徽CORS参考站三维速度场分析[J];武汉大学学报(信息科学版);2016年04期
5 苏建锋;薄万举;;高噪声背景下GNSS垂向分量应用探讨[J];地震;2016年01期
6 时荣;;一种计算北斗三频多路径的方法及其结果分析[J];测绘与空间地理信息;2015年08期
7 占伟;武艳强;梁洪宝;朱爽;张风霜;刘金钊;;GPS观测结果反映的尼泊尔M_w7.8地震孕震特征[J];地球物理学报;2015年05期
8 张余亮;王昊;田建波;陆乃虎;张海忠;;三种软件解算GPS长基线的精度分析[J];海洋测绘;2015年01期
9 刘炎炎;叶世榕;江鹏;陈昊;黄志华;杜仲进;;基于北斗三频的短基线单历元模糊度固定[J];武汉大学学报(信息科学版);2015年02期
10 马丙浩;田林亚;张勇;;TTC、LGO、GAMIT对矿区内短基线解算的对比分析[J];地理空间信息;2014年02期
相关博士学位论文 前4条
1 梁诗明;基于GPS观测的青藏高原现今三维地壳运动研究[D];中国地震局地质研究所;2014年
2 李壮;短基线定位关键技术研究[D];哈尔滨工程大学;2013年
3 马高峰;VLBI2010与GNSS联合数据分析理论及方法研究[D];解放军信息工程大学;2011年
4 刘根友;高精度GPS定位及地壳形变分析若干问题的研究[D];中国科学院研究生院(测量与地球物理研究所);2004年
相关硕士学位论文 前5条
1 杨旭;GNSS多系统融合短基线解算方法研究与软件实现[D];安徽理工大学;2016年
2 高涵;基于高精度时序GPS处理的区域速度场及地壳形变特征研究[D];长安大学;2014年
3 颜金彪;GPS长基线数据处理软件系统分析与实现[D];西南交通大学;2013年
4 任雅奇;基于GPS数据的中国地壳运动速度场模型的建立[D];解放军信息工程大学;2012年
5 汤璞;中短基线GPS解算中影响精度的因素研究[D];中国人民解放军信息工程大学;2003年
,本文编号:2287930
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2287930.html