高分辨率遥感影像对象分类方法研究及其城乡规划监测应用
发布时间:2018-10-26 17:16
【摘要】:随着遥感技术的发展,更高空间分辨率的航天遥感数据产品不断出现,以及航空遥感技术的日臻成熟,为城乡规划遥感监测提供了有效而适用的数据源。本文以WorldView-Ⅱ卫星遥感数据结合高分辨率的航空遥感数据,针对我国迅速城市化过程中城乡规划与建设的监测问题,开展适合高空间分辨率遥感影像的面向对象特征构建、特征选择和城市地物分类等技术研究,并进一步应用于城乡规划的控制性详细规划监测。主要研究内容与结果如下: (1)在影像多尺度分割生成对象的基础上,研究了对象特征构建算法,重点研究了城市地物较突出的纹理特征和形状特征构建算法。首先研究了基于半变异函数的纹理计算尺度问题,并进一步研究了基于灰度共生矩阵的对象纹理特征计算算法。针对城市建筑地物形状规整的特点,研究了多种形状特征计算算法。 (2)分割后的高分遥感影像对象有光谱、纹理和形状等多种特征的特点,众多特征参与分类,分类效率会降低,但分类精度也未必能提高。针对面向对象分类有益特征选择问题,研究了对象特征选择的技术流程,首先基于改进的ReliefF去除无关特征,再利用特征间的互信息初步去除冗余特征,形成特征粗集,最后利用遗传算法,以类内、类间距离为适应度函数,对影像对象分类的最优特征子集进行搜索和评价,最终得到有益于城乡地物对象分类的特征子集。 (3)针对面向对象分类的小样本问题,结合SVM适合小样本的特点,本文针对基于SVM的面向对象分类中的部分环节进行了研究。针对径向基核函数SVM的C和γ参数对分类精度影响大的问题,在前人研究的基础上,结合城市监测的需要,研究了三步搜索法的参数优化算法。SVM是针对二分类问题,本文设计了多类分类的流程,即在投票法SVM分类的基础上,进一步利用最近邻法,对票数相同或相差一票的情况进一步分类。最后,以北京市某2个区域为研究区,以高分辨率的WorldView-Ⅱ航天卫星遥感影像为数据源,辅以研究区航空遥感影像,构建遥感城乡土地利用分类体系。在影像分割的基础上,利用本文研究的特征构建算法、特征优选技术流程,以及基于改进SVM分类算法,完成研究区的城市地类分类。最后以研究区的城市规划图为依据,对该区域的城市规划执行情况进行监测和评价。
[Abstract]:With the development of remote sensing technology, higher spatial resolution spaceflight remote sensing data products are emerging, and the aeronautical remote sensing technology is becoming more and more mature, which provides an effective and applicable data source for urban and rural planning remote sensing monitoring. In this paper, WorldView- 鈪,
本文编号:2296433
[Abstract]:With the development of remote sensing technology, higher spatial resolution spaceflight remote sensing data products are emerging, and the aeronautical remote sensing technology is becoming more and more mature, which provides an effective and applicable data source for urban and rural planning remote sensing monitoring. In this paper, WorldView- 鈪,
本文编号:2296433
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2296433.html