双极化SAR影像分类研究与应用
[Abstract]:Based on the study of the characteristics of ALOSPALSAR bipolar SAR data and the scattering mechanism of ground objects, the feature parameters extracted by the polarimetric target decomposition method are used to classify and process the dual-polarized SAR images in order to improve the classification accuracy of the polarimetric SAR images. Compared with optical data and traditional radar data, polarimetric SAR data not only includes amplitude information, but also has phase information, so the data record abundant backscattering information in different polarimetric states of each resolution unit. Based on the characteristics of polarimetric radar, which is not affected by day and night clouds, can penetrate vegetation and shallow surface, multi-band and multi-polarization, high-resolution active imaging, polarimetric SAR radar in urban planning and change, crop growth, Geological bodies and geological phenomena (hidden), geological hazards and other aspects of monitoring and mapping have unique advantages. Due to the location of the object, the surface geometry and dielectric properties, the echo received by polarized SAR has a complex scattering process. When analyzing the imaging mechanism of polarimetric SAR, Some parameters representing the properties of objects must be extracted from these complex scattering echoes, and the target decomposition method emerges as the times require. This paper focuses on revealing the scattering mechanism of ground objects represented by the extraction parameters of polarimetric SAR targets and improving the classification accuracy of dual-polarized SAR images, and studies the ground objects classification in Changbai Mountain area. The results are as follows: 1. The dual-polarization SAR image in this study has the phenomenon of data compression and speckle noise. In order to ensure the accuracy of information extraction, a series of preprocessing of the image data is carried out. By analyzing the statistical characteristics of speckle and the noise model, combining the characteristics of dual-polarized SAR images, the multi-view processing of ALOSPALSAR dual-polarization data is carried out, which improves the radiative resolution of polarized SAR images. Then, three filtering algorithms, Boxcar,Lee-sigma and enhanced Lee, are used to compare and analyze the noise reduction of the multi-view image. Each filtering algorithm can reduce the noise, and the enhanced Lee filter is the most effective to suppress speckle noise. Keeping spatial resolution and polarization information is a high performance and high quality filtering method. 2. The conventional radar data are classified by ML and SVM respectively. Compared with ML's classification algorithm, SVM improves the accuracy of ground object classification, and verifies that the choice of classifier directly affects the classification quality of polarimetric SAR images. 3. Extraction of polarization characteristic parameters. Through the Cloude target decomposition of the coherent matrix of dual-polarized SAR data, four characteristic parameters reflecting the scattering mechanism of the target are extracted. The analysis shows that the four parameters represent the scattering information and physical significance of the ground objects under different scattering mechanisms. It provides an effective feature parameter set for polarimetric SAR image classification based on target decomposition. This is the characteristic of this thesis. 4. Realization of dual-polarization SAR image classification algorithm based on Cloude target decomposition. Because the characteristic parameters obtained by target decomposition have definite physical significance, it is effective and feasible to apply target decomposition technology to the classification of polarimetric SAR images. In this paper, the feature parameters obtained from the target decomposition are combined with the high performance SVM classifier to realize the ground object classification algorithm for the dual-polarization SAR images. The results show that the classification accuracy of dual-polarization SAR images based on target decomposition is higher than that of conventional radar data, and all kinds of ground objects can be separated accurately. The polarimetric target decomposition method can be used as an effective technique for the classification of bipolar SAR images.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P225.1;TP391.41
【参考文献】
相关期刊论文 前10条
1 徐丰;金亚秋;;目标散射的去取向理论和应用(二)地表分类应用[J];电波科学学报;2006年02期
2 杨虎,郭华东,李新武,岳焕印;极化雷达目标信息分解技术及其在古湖岸线探测中的应用[J];地球信息科学;2003年02期
3 李春升,燕英,陈杰,黄岩,周荫清;高分辨率星载SAR单视图像斑点噪声抑制实现方法[J];电子学报;2000年03期
4 刘国庆,熊红,黄顺吉,A.Torre,F.Rubertone;多视极化合成孔径雷达图象的分类和极化通道优化[J];电子科学学刊;1998年01期
5 刘秀清,杨汝良,杨震;双波段全极化SAR图像非监督分类方法及实验研究[J];电子与信息学报;2004年11期
6 吴永辉;计科峰;郁文贤;;基于H-α和改进C-均值的全极化SAR图像非监督分类[J];电子与信息学报;2007年01期
7 谭衢霖;;SAR遥感数据用于岩性识别与分类的研究[J];地质找矿论丛;2009年04期
8 樊祺诚;隋建立;王团华;李霓;孙谦;;长白山火山活动历史、岩浆演化与喷发机制探讨[J];高校地质学报;2007年02期
9 吴钢,肖寒,赵景柱,邵国凡,李静;长白山森林生态系统服务功能[J];中国科学(C辑:生命科学);2001年05期
10 王纪珩;殷维刚;沈云秋;赵韶平;;基于C均值和SVM的SAR图像目标分类研究[J];计算机与数字工程;2008年01期
相关博士学位论文 前4条
1 汪洋;极化合成孔径雷达图像处理及其应用研究[D];安徽大学;2007年
2 吴永辉;极化SAR图像分类技术研究[D];国防科学技术大学;2007年
3 代大海;极化雷达成像及目标特征提取研究[D];国防科学技术大学;2008年
4 周晓光;极化SAR图像分类方法研究[D];国防科学技术大学;2008年
相关硕士学位论文 前6条
1 代大海;POLSAR图像模拟及目标检测与分类方法研究[D];国防科学技术大学;2003年
2 袁磊;极化SAR图像增强与分类技术研究[D];电子科技大学;2007年
3 贾广帅;机载激光雷达数据特点和滤波方法研究[D];山东科技大学;2007年
4 赵力文;基于目标分解理论的极化SAR图像分类方法研究[D];国防科学技术大学;2007年
5 吴婉澜;基于子孔径的极化SAR图像目标分类算法研究[D];电子科技大学;2009年
6 宋才秀;基于地物散射特性分析的机载极化SAR分类研究[D];中南大学;2012年
本文编号:2300521
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2300521.html