当前位置:主页 > 科技论文 > 测绘论文 >

基于运动特征的轨迹相似性度量研究

发布时间:2018-11-18 16:16
【摘要】:随着各种定位(如北斗、GPS等)和无线通讯技术的发展,人类获取了大量移动对象的时空轨迹数据,时空轨迹数据挖掘己成为当前的研究热点,在智能交通系统、气候监测、运动生态学等领域具有重要意义。运动特征是移动对象的运动参数如速度、加速度等表现出的可以区别于其他对象的征象或标志,它是移动对象的重要属性,能够反映移动对象的内在特点以及外部环境对其运动的影响。轨迹的相似性度量是轨迹数据挖掘的核心问题之一,本文研究基于运动特征的轨迹相似性度量,其可用于相似性查询及运动模式发现等应用中。本文以轨迹的运动特征为主线,对轨迹的相似性度量展开深入研究,改进并发展新的基于运动特征的轨迹相似性度量,并将其应用于相关应用中,论文主要工作和成果如下:1,在对现有运动参数和运动特征总结与凝炼的基础上,提出了基于层次运动特征和分类学习的轨迹相似性度量,并将其应用于移动目标识别。该相似性度量分别提取全局和局部运动特征而构成层次运动特征,全局特征利用高级的统计量来提取,局部特征从分割后的运动参数时间序列中提取,层次运动特征与分类学习方法支持向量机相结合构建相似性度量。在三个真实轨迹数据集上的实验表明,该相似性度量区分力强,与已有方法相比显著提高了移动目标的识别精度。2,提出了基于多重运动特征的轨迹相似性度量,并将其应用于基于多重运动特征的运动序列模式发现。该相似性度量借鉴数据立方体的思想,将多重运动参数时间序列进行量化和符号化表示,在多重运动特征值域空间中计算两符号间的距离,以此作为加权编辑距离的替换代价,最终以加权编辑距离作为相似性度量。该相似性度量反映了多重运动特征的演变趋势,即运动序列模式。将该相似性度量与谱聚类方法相结合进行运动序列模式发现,以大西洋飓风数据为例,通过气象文献中飓风的发生与运动规律验证了本方法的有效性,并分析了飓风多重运动特征的序列模式。3,提出了融合运动特征的轨迹时空相似性度量,并将其应用于基于运动特征的轨迹时空分布模式发现中。该相似性度量融合了空间距离、时间距离与运动特征距离。空间距离利用实数序列上的编辑距离(EDR, Edit Distance on Real Sequence)来度量,运动特征距离利用标准化的加权编辑距离(NWED,Normalized Weighted Edit Distance)来度量,时间距离利用两轨迹的起点距离、终点距离与轨迹的持续时间来度量,最终,通过加权平均方式将这三个距离有效、灵活地结合成融合运动特征的轨迹时空相似性度量。将该相似性度量与谱聚类方法相结合进行基于运动特征的时空分布模式发现,通过气象文献中飓风在空间与季节上的分布规律验证了本方法的有效性,并分析了基于飓风速度特征的轨迹时空分布规律。本文改进并发展了基于运动特征的轨迹相似性度量,推进了轨迹相似性的理论及应用研究,为轨迹数据挖掘提供了有价值的研究成果。
[Abstract]:With the development of various positioning (such as Beidou, GPS, etc.) and the wireless communication technology, the space-time track data of a large number of moving objects is acquired by human beings, and the time-space trajectory data mining has become the current research hotspot, and in the intelligent transportation system and the climate monitoring, and is of great significance in the fields of sports ecology and the like. The motion feature is the characteristic of the moving object, such as speed, acceleration, etc., which can be distinguished from other objects. It is the important attribute of the moving object, which can reflect the intrinsic characteristics of the moving object and the influence of the external environment on its movement. The similarity measure of the track is one of the core problems of the track data mining. This paper studies the track similarity measure based on the motion feature, which can be used in the application of similarity query and motion pattern discovery. In this paper, the motion characteristics of the track are the main line, the similarity measure of the track is further studied, the new track similarity measure based on the motion characteristics is improved and developed, and the method is applied to the related application, and the main work and the result of the paper are as follows: 1, On the basis of summarizing and refining existing motion parameters and motion characteristics, a track similarity measure based on hierarchical motion characteristics and classification learning is proposed and applied to mobile object recognition. the similarity measure is used for extracting global and local motion characteristics respectively to form a hierarchical motion feature, The hierarchical motion feature and the classification learning method support vector machine to construct the similarity measure. the experiments on the three real track data sets show that the similarity measure is strong, the recognition accuracy of the moving target is obviously improved compared with the existing method, and the track similarity measure based on the multiple motion characteristics is proposed, and is applied to a motion sequence pattern discovery based on multiple motion characteristics. the similarity measure refers to the idea of the data cube, and the multi-motion parameter time series is quantized and symbolized, the distance between the two symbols is calculated in the multi-motion characteristic value range space, Finally, a weighted edit distance is used as the similarity measure. The similarity measure reflects the evolution trend of the multiple motion characteristics, that is, the motion sequence mode. In this paper, the similarity measure is combined with the spectrum-based method to find that the Atlantic hurricane data is an example, the effectiveness of the method is verified by the occurrence and movement of the hurricane in the meteorological document, and the sequence pattern of the multi-motion characteristics of the hurricane is analyzed. In this paper, the space-time similarity measure of the motion feature is proposed, and it is applied to the trace-time distribution pattern discovery based on the motion feature. The similarity measure combines the spatial distance, the time distance and the moving feature distance. The spatial distance is measured by the edit distance (EDR, Edit Distance on Real Sequence) on the real sequence, the moving feature distance is measured using a normalized weighted edit distance (NWED, Normalised Weight Edit Distance), the time distance is measured using the starting distance, the end distance and the duration of the trajectory, and finally, the three distances are effectively and flexibly combined into a track space-time similarity measure of the fusion motion characteristic by a weighted average mode. By combining the similarity measure and the spectrum-based method, the spatial-temporal distribution pattern based on the motion characteristics is found, the effectiveness of the method is verified by the distribution law of the hurricane in the space and the season in the meteorological document, and the time-space distribution rule of the track based on the characteristic of the hurricane speed is analyzed. The paper improves and develops the track similarity measure based on the motion feature, and advances the theory and application of the track similarity, and provides valuable research results for the track data mining.
【学位授予单位】:南京师范大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P208;P425

【相似文献】

相关期刊论文 前10条

1 谢明霞;王家耀;郭建忠;陈科;;不等距划分的高维相似性度量方法研究[J];武汉大学学报(信息科学版);2012年07期

2 贺玲;吴玲达;蔡益朝;;高维空间中数据的相似性度量[J];数学的实践与认识;2006年09期

3 隋正伟;邬阳;刘瑜;;基于签到数据的用户空间出行相似性度量方法研究[J];地理信息世界;2013年03期

4 李海林;郭崇慧;;基于多维形态特征表示的时间序列相似性度量[J];系统工程理论与实践;2013年04期

5 杨艳春;孟祥武;;基于关键词的对等网络节点群相似性度量模型研究[J];武汉大学学报(理学版);2011年06期

6 李永宁;一种基于纹理的图象相似性度量模型(英文)[J];四川大学学报(自然科学版);2003年02期

7 胡茂海;;基于相关输出相似性度量的目标识别算法[J];中国激光;2012年04期

8 刘丹;卫金茂;张杰;;GO术语间语义相似性度量方法[J];东北师大学报(自然科学版);2010年01期

9 杜培军;唐宏;方涛;;高光谱遥感光谱相似性度量算法与若干新方法研究[J];武汉大学学报(信息科学版);2006年02期

10 郭铭铭;窦建华;杨彬;;基于形式化概念分析和概念相似性度量的程序重组方法(英文)[J];南京大学学报(自然科学版);2011年05期

相关会议论文 前10条

1 刘喜平;万常选;;一种二维的树型文档结构相似性度量[A];第二十五届中国数据库学术会议论文集(二)[C];2008年

2 刘俊义;王润生;;仿射不变的多边形相似性度量[A];中国图象图形科学技术新进展——第九届全国图象图形科技大会论文集[C];1998年

3 杨艳春;孟祥武;;P2P网络服务环境中的节点相似性度量研究[A];CCF NCSC 2011——第二届中国计算机学会服务计算学术会议论文集[C];2011年

4 李彬彬;罗乐;;基于信源学的光谱相似性度量方法的比较研究[A];2009全国计算机网络与通信学术会议论文集[C];2009年

5 罗阳;赵伟;;相似性度量研究及最优相似系数[A];中国气象学会2008年年会天气预报准确率与公共气象服务分会场论文集[C];2008年

6 周晓蕾;唐明浩;於思俊;;服装款式系统中的相似性度量算法研究[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年

7 刘宝生;闫莉萍;周东华;;图像匹配中相似性度量[A];第16届中国过程控制学术年会暨第4届全国故障诊断与安全性学术会议论文集[C];2005年

8 李新光;郑君君;祝一薇;刘建军;夏胜平;谭立球;;基于属性图模型的图像相似性度量[A];第十五届全国图象图形学学术会议论文集[C];2010年

9 沈君;马生全;;两种新的相似性度量在模糊推理中的应用[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年

10 廉鑫;林伟坚;张海威;袁晓洁;;基于双向路径约束模型的XML文档结构相似性度量[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年

相关博士学位论文 前7条

1 赵秀丽;基于有趣地点压缩的移动点对象时空轨迹聚类研究[D];北京交通大学;2016年

2 朱进;基于运动特征的轨迹相似性度量研究[D];南京师范大学;2015年

3 白雪;聚类分析中的相似性度量及其应用研究[D];北京交通大学;2012年

4 张明;基于内容的图象相似性度量技术研究及其在水利中的应用[D];河海大学;2003年

5 邱明;语义相似性度量及其在设计管理系统中的应用[D];浙江大学;2006年

6 周瑜;视频跟踪中的目标建模及相似性度量研究[D];华中科技大学;2014年

7 戚文静;基于范例的图案创作关键技术研究[D];山东大学;2012年

相关硕士学位论文 前10条

1 曹莉莉;基于GC-MS的高速谱库搜索算法研究[D];安徽大学;2015年

2 蒋欣;基于粒子滤波的故障预报算法研究[D];福建师范大学;2015年

3 张豪;符号序列相似性度量及聚类新算法[D];福建师范大学;2015年

4 周汉海;基于少量选点的社团检测算法研究[D];兰州大学;2015年

5 张考;面向电子商务的虚假评论检测的关键技术研究[D];解放军信息工程大学;2015年

6 张静转;基于集对相似性度量的社区发现算法研究[D];燕山大学;2016年

7 张婷;基于近邻协同过滤算法中相似性度量的研究[D];西南交通大学;2016年

8 黄_g;相似性度量的研究及其在数据挖掘中的应用[D];福建师范大学;2009年

9 练仕榴;生物医学信号的相似性度量研究[D];天津理工大学;2011年

10 朱波;程序代码相似性度量方法研究[D];长春工业大学;2015年



本文编号:2340515

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2340515.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b612d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com