总体最小二乘联合平差方法及其应用研究
[Abstract]:With the development of spatial geodetic technology and the abundance of data types, how to effectively fuse all kinds of observation data for joint adjustment to obtain useful information of different types of observation data and obtain reliable adjustment results has become a hot research topic. However, most of the joint adjustment results are based on Gauss-Markov model expansion (it is considered that only observation vectors contain random errors). In many cases, the coefficient matrix is also affected by random errors. Therefore, a more reasonable method should consider the variable containing error model (errors-in-variables,EIV). The existing joint adjustment methods have the following shortcomings: (1) the joint adjustment method is solved under the least square adjustment criterion. In practice, the coefficient matrix is also composed of observation data with random errors; (2) in solving the joint adjustment, the majority of literatures regard all kinds of data as equal weight ratio, that is to say, the proportion of all kinds of data in the joint adjustment is assumed to be the same. In view of the above problems, this paper applies the total least square method to the joint adjustment problem, and uses the relative weight ratio (the weight ratio factor) to balance the proportion between two or more kinds of data. The estimation formula of model parameters under the general least square combined adjustment criterion is derived, and the determination method of relative weight ratio in joint adjustment is explored. The combined adjustment method is applied to the volcanic deformation of the Mogi model, and the application of the derivation method to the practical problems is verified. The specific research contents are as follows: 1. The fusion of different types of data is the basic problem of geodetic data processing. The weighted global least square adjustment method for multiple observation data is derived. In the determination of relative weight ratio, several schemes are designed, and the weight ratio is determined by combining the prior unit weight variance method and the discriminant function minimization method. The results show that the prior unit weight variance method is suitable for the case where the prior information of the data is relatively accurate. When the prior information is not accurate, the discriminant function minimization method can obtain better parameter estimation results. 2. In view of the fact that the discriminant function is not unique, the empirical discriminant function is used to determine the weight ratio. In this paper, a weighted population least squares combined adjustment method with adaptive weight ratio factor is derived, and the Helmert variance component estimation formula suitable for weighted population least squares combined adjustment is given. The model parameters are obtained by adaptively solving the proportion of different kinds of observation data participating in the joint adjustment. The simulation results show that the proposed weighted population least squares combined adjustment method with adaptive weight ratio factor can obtain the same adjustment results as the existing least square variance component estimation method. It is better than the least square combined adjustment and the weighted total least squares combined adjustment without weight ratio factor. Compared with the existing least square variance component estimation method, the derivation method has higher computational efficiency. By combining In SAR and GPS data, the derivation method is applied to the inversion of L'Aquila seismic slip distribution, and the weighted total least squares combined adjustment method with the least square combined adjustment method is compared with the least squares combined adjustment method. Based on the study of joint adjustment and the determination of weight ratio by minimization of discriminant function, the application of total least squares combined adjustment method in inversion of Mogi model of Tianchi volcano in Changbai Mountain is systematically studied. According to the nonlinear characteristics of the model, the method of calculating the cofactor matrix between the observation vector and the coefficient matrix is given for the linearization of the model. The results show that the proposed method can obtain reasonable estimation results of pressure source parameters and has certain practical application value.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P207
【相似文献】
相关期刊论文 前10条
1 朱明德;林水生长“多对多”系统参数最小二乘辨识[J];南京林业大学学报(自然科学版);1986年01期
2 周叮;最小二乘识别的一个改进算法[J];力学与实践;1992年06期
3 王守道,徐森根;晶体结构参数阻尼最小二乘精化法[J];科学通报;1981年23期
4 杨自强;广义最小二乘模型的应用[J];科学通报;1982年07期
5 王琴;沈远彤;;二尺度最小二乘小波支持向量回归[J];工程地球物理学报;2009年04期
6 姜华;曹红妍;;基于最小二乘支持向量机的铁路客运量预测研究[J];河南科学;2010年08期
7 杨自强;;广义最小二乘模型与判别分类[J];物化探电子计算技术;1981年03期
8 范鹰,时军;最小二乘原则的一个推广应用[J];天津城市建设学院学报;1998年04期
9 文国仓;田晓程;;基于加权整体最小二乘的多元线性回归分析[J];青海大学学报(自然科学版);2014年04期
10 郑彦玲;;剔除相关性的最小二乘理论研究[J];数理医药学杂志;2008年06期
相关会议论文 前10条
1 孙明轩;毕宏博;;最小二乘学习辨识[A];中国自动化学会控制理论专业委员会D卷[C];2011年
2 袁庆;楼立志;陈玮娴;;加权总体最小二乘在三维基准转换中的应用[A];第二届中国卫星导航学术年会电子文集[C];2011年
3 宋海鹰;桂卫华;阳春华;;基于核偏最小二乘的简约最小二乘支持向量机及其应用研究[A];第二十六届中国控制会议论文集[C];2007年
4 陈慧波;丁锋;;基于输出快采样数据的确定性系统最小二乘盲辨识方法[A];第二十六届中国控制会议论文集[C];2007年
5 苑云;朱肇昆;尚洋;;一种加速最小二乘匹配方法[A];第十三届全国实验力学学术会议论文摘要集[C];2012年
6 康传会;汪晓东;汪轲;常健丽;;基于最小二乘支持向量机的迟滞建模方法[A];第二十九届中国控制会议论文集[C];2010年
7 于正n\;朱圣英;崔平远;;小天体地形重构技术的最小二乘实现与精度分析[A];中国宇航学会深空探测技术专业委员会第八届学术年会论文集(下篇)[C];2011年
8 闫守柱;罗佳;吉雯龙;张传海;胡晓明;;基于ACPSO的最小二乘支持向量机分类方法研究[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年
9 周明东;林俊聪;金小刚;;基于最小二乘网格的模型修补[A];中国计算机图形学进展2008--第七届中国计算机图形学大会论文集[C];2008年
10 胡亚轩;王庆良;崔笃信;王文萍;李克;郑传芳;陈红卫;;Mogi模型的阻尼最小二乘反演及其应用[A];中国地球物理学会第22届年会论文集[C];2006年
相关博士学位论文 前1条
1 陶叶青;总体最小二乘模型及其在矿区测量数据处理中的应用研究[D];中国矿业大学;2015年
相关硕士学位论文 前10条
1 秦天龙;方程误差模型基于最新估计的加权新息最小二乘辨识[D];哈尔滨工业大学;2015年
2 于冬冬;病态总体最小二乘解算方法及应用研究[D];东华理工大学;2015年
3 刘晓飞;提高流量计检定台检测效率方法研究[D];华南理工大学;2015年
4 陶武勇;总体最小二乘粗差探测和定位[D];东华理工大学;2015年
5 薛松;基于KFCM的模糊最小二乘SVM研究[D];南京邮电大学;2015年
6 冉恩全;基于最小二乘复指数法的局部模态参数识别及应用[D];重庆大学;2015年
7 孙郧松;分频编码最小二乘偏移方法研究[D];中国石油大学(华东);2014年
8 胡明;基于最小二乘支持向量机的航空伽玛能谱分段去噪方法研究[D];东华理工大学;2016年
9 余航;总体最小二乘联合平差方法及其应用研究[D];东华理工大学;2016年
10 周鑫;最小二乘策略迭代算法研究[D];苏州大学;2014年
,本文编号:2365065
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2365065.html