基于点云的数据处理技术及三维重建研究
[Abstract]:With the continuous updating of spatial data acquisition equipment, the single data acquisition method can not meet the needs of 3D reconstruction. For example, UAV aerial photography image scale, wide angle of view, high present situation, but the lack of building facade information; The data of point cloud collected by 3D laser scanner have high accuracy, abundant information of ground objects, no dead angle but large area topography, and the collection of point cloud on top of building is very difficult. Based on this, a combination of UAV technology and 3D laser scanning technology is proposed, and the data processing technology and reconstruction method of the two technologies are discussed. Based on the summary of low altitude photogrammetry system, this paper analyzes the flow chart of UAV field data acquisition and the method of setting up image control points, and discusses the processing method of internal data in view of the process of aerial image acquiring point cloud data. Secondly, combining with the working principle of 3D laser scanner and the method of data acquisition in field of work, the principle of setting target is analyzed, and the registration method of multi-view cloud is discussed, and different experimental schemes are designed. The accuracy of different registration methods and the effect of different number of groups on registration accuracy are compared and analyzed. Thirdly, combined with the existing research results, this paper focuses on the point cloud data processing technology, respectively from the point cloud noise reduction, point cloud reduction and point cloud classification three aspects of analysis and research. Based on the characteristics of the study area, the methods of noise reduction and terrain reduction are explored. Finally, based on the lack of accuracy of 3D reconstruction model of mixed terrain and ground objects, the paper uses decision tree classification method to divide 3D reconstruction process into two simultaneous processes: terrain 3D reconstruction and ground object 3D reconstruction. Then the reconstruction method is optimized and the modeling efficiency is improved on the basis of ensuring the modeling accuracy.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P225.2;P23
【参考文献】
相关期刊论文 前10条
1 李丁;邹自力;;基于包围盒法三维扫描点云数据精简方法比较[J];江西测绘;2015年02期
2 陈西江;花向红;鲁铁定;田茂;;利用平面特征和KNNS提高点云配准效率[J];中国矿业大学学报;2014年06期
3 韩贤权;朱庆;丁雨淋;周东波;;散乱点云数据精配准的粒子群优化算法[J];武汉大学学报(信息科学版);2014年10期
4 叶冬荣;李维诗;张滋黎;周维虎;;基于二次精简的散乱点云精简方法[J];计算机系统应用;2014年09期
5 叶珉吕;花向红;陈西江;魏成;;基于正交整体最小二乘平面拟合的点云数据去噪方法研究[J];测绘通报;2013年11期
6 田野;向宇;高峰;高亮;;利用Pictometry倾斜摄影技术进行全自动快速三维实景城市生产——以常州市三维实景城市生产为例[J];测绘通报;2013年02期
7 孙军华;谢萍;刘震;张广军;;基于分层块状全局搜索的三维点云自动配准[J];光学精密工程;2013年01期
8 谭衢霖;王今飞;;结合高分辨率多光谱影像和LiDAR数据提取城区建筑[J];应用基础与工程科学学报;2011年05期
9 王茹;周明全;邢毓华;;基于聚类平面特征的三维点云数据精简算法[J];计算机工程;2011年10期
10 肖春霞;;Multi-Level Partition of Unity Algebraic Point Set Surfaces[J];Journal of Computer Science & Technology;2011年02期
相关博士学位论文 前4条
1 陈焱明;基于机载与车载LiDAR数据的建筑物模型多视三维重建研究[D];南京大学;2015年
2 姜巍;三维几何模型的内蕴对称检测技术研究[D];国防科学技术大学;2013年
3 李宝;三维点云的鲁棒处理技术研究[D];国防科学技术大学;2011年
4 李剑;基于激光测量的自由曲面数字制造基础技术研究[D];浙江大学;2002年
相关硕士学位论文 前8条
1 李明慈;微型无人机摄影测量数据处理研究[D];北京建筑大学;2015年
2 赵志刚;航空摄影测量外业像控点布设的精度分析及应用[D];长安大学;2015年
3 刘葛;基于Matrix软件系统正射影像图的研究[D];昆明理工大学;2014年
4 吴胜浩;车载激光点云的颜色信息获取与融合处理[D];首都师范大学;2011年
5 孙正林;三维激光扫描点云数据滤波方法研究[D];中南大学;2011年
6 蔡宽;基于点云的三维重建技术研究[D];哈尔滨工业大学;2010年
7 董秀军;三维激光扫描技术及其工程应用研究[D];成都理工大学;2007年
8 钱锦锋;逆向工程中的点云处理[D];浙江大学;2005年
,本文编号:2376420
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2376420.html