当前位置:主页 > 科技论文 > 测绘论文 >

动力学法的卫星重力反演算法特点与改进设想

发布时间:2018-12-18 09:56
【摘要】:根据卫星轨道计算的积分公式,导出了以参考轨道为初值的线性化解算地球重力场的观测方程,给出了其系数矩阵的积分计算公式,阐明了动力学法本质上是观测值相对于参考轨道的线性摄动方法,因此其变分方程力模型参数的偏导数初值必定为0。在此公式的基础上,分析了动力学法观测方程的主要特点,即线性化误差随轨道弧段增长而快速增大,其观测方程的性质也随弧段增长而变差,且积分计算误差将是下一代重力卫星数据处理的重要瓶颈问题。提出了进一步提高动力学法重力反演精度的方法,主要归结为:改进以几何轨道为初值的线性化方法以减小线性化误差,改变参数化方式以改善观测方程的性质,综合应用解析公式与数值积分公式以提高轨道计算精度。
[Abstract]:According to the integral formula of satellite orbit calculation, the observation equation of linear solution of earth gravity field with reference orbit as initial value is derived, and the integral calculation formula of coefficient matrix is given. It is shown that the dynamic method is essentially a linear perturbation method with respect to the observed value relative to the reference orbit, so the initial value of the partial derivative of the force model parameters of the variational equation must be 0. On the basis of this formula, the main characteristics of the dynamic observation equation are analyzed, that is, the linearization error increases rapidly with the increase of the orbital arc, and the properties of the observation equation become worse with the increase of the arc segment. The integral calculation error will be an important bottleneck in the next generation gravity satellite data processing. A method for further improving the precision of gravity inversion by dynamic method is proposed. The main results are as follows: the linearization method with geometric orbit as initial value is improved to reduce the linearization error, and the parameterization method is changed to improve the properties of the observation equation. The analytical formula and numerical integral formula are used to improve the accuracy of orbit calculation.
【作者单位】: 同济大学测绘与地理信息学院;
【基金】:国家自然科学基金(41474017) 中国科学院战略性先导科技专项(B类)(XDB23030100) 高分遥感测绘应用示范系统资助项目~~
【分类号】:P223

【相似文献】

相关期刊论文 前3条

1 杨沾吉,于正林,汤永安;四维重力反演方法初探[J];测绘通报;1995年04期

2 郑伟;许厚泽;钟敏;刘成恕;;不同插值法对下一代卫星重力反演精度的影响[J];宇航学报;2014年03期

3 游为;范东明;黄强;;卫星重力反演的短弧长积分法研究[J];地球物理学报;2011年11期



本文编号:2385681

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2385681.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ada4f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com