降低无人机影像数据冗余度方法的研究
[Abstract]:Unmanned aerial vehicle (UAV) images have a high degree of overlap, too many amplitudes, and it takes a lot of time to concatenate images. Without affecting the quality of data, how to reduce the redundancy of aerial photographs is the main problem in this paper. Based on the land right confirmation project of a county in Gansu province and the measured UAV image as the basic data, this paper analyzes and researches on reducing the overlap degree and data redundancy of UAV image. The specific research contents and results are as follows: 1. Firstly, the image overlap degree of UAV data in the study area is calculated. Combined with the optimal overlap degree and specification requirements of UAV, it is found that there is a lot of redundancy in UAV images. Aiming at the characteristics of high overlap degree of UAV images, thinning methods with different intervals are used to dilute the images. The experimental results show that the larger the thinning interval is, the less time is used for image stitching and the greater the error in plane position is. At intervals of 4 images, the critical value of image overlap degree is reached, and the time of stitching is more than half of that of unextracted images. By constructing a sample database containing 138 aerial remote sensing images and using the method of knowledge base, on the basis of 10 points system, the weighted mean standard deviation (WMSD) is put forward. The average gradient and information entropy are used to evaluate the image quality, and a thinning method based on the comprehensive evaluation value is established. Its image stitching time is nearly half shorter than that of all image stitching, and the "white spot" phenomenon caused by overexposure image is obviously reduced, and the recognition degree of image is improved obviously, and the good control of the error in the plane position of the image is obtained. Image clipping also reduces image overlap and speeds up UAV image matching. At the same time, the edge distortion of UAV image is large, and the edge of the cut image is basically cut off, which can greatly improve the registration accuracy of the image. In view of this feature of image clipping, the combination of image clipping and rarefaction is proposed to further shorten the image stitching time and improve the influence of image edge distortion on image mosaic.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 李二俊;刘万林;余涛;谢东海;蔡庆空;;基于SURF算法的无人机航空图像自动配准研究[J];工程勘察;2013年10期
2 阚峻岭;谷宗运;殷云霞;杜春敏;;基于ASIFT的医学图像配准算法[J];安庆师范学院学报(自然科学版);2013年01期
3 杨小辉;王敏;;基于ASIFT的无缝图像拼接方法[J];计算机工程;2013年02期
4 刘庆元;刘有;邹磊;易柳城;;无人机遥感影像拼接方法探讨[J];测绘通报;2012年05期
5 殷瑞静;陈水利;;基于ASIFT的低空遥感影像拼接技术[J];集美大学学报(自然科学版);2012年02期
6 陈硕;吴成东;陈东岳;;基于视觉显著性特征的快速场景配准方法[J];中国图象图形学报;2011年07期
7 安建妮;刘贵喜;;利用特征点配准和变换参数自动辨识的图像拼接算法[J];红外与激光工程;2011年03期
8 谢雨来;李醒飞;吕津玮;高雅彪;;基于SURF算法的水下图像实时配准方法[J];计算机辅助设计与图形学学报;2010年12期
9 苏俊英;;SIFT特征匹配无人飞艇多光谱影像拼接[J];应用科学学报;2010年06期
10 鲁恒;李永树;何敬;陈强;任志明;;一种基于特征点的无人机影像自动拼接方法[J];地理与地理信息科学;2010年05期
相关硕士学位论文 前6条
1 陶青松;基于ASIFT特征的图像匹配技术研究[D];云南大学;2012年
2 周茜;遥感影像自动拼接技术研究[D];西安电子科技大学;2012年
3 韩文超;基于POS系统的无人机遥感图像拼接技术研究与实现[D];南京大学;2011年
4 曹红杏;基于特征的图像拼接技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2008年
5 张春美;特征点提取及其在图像匹配中的应用研究[D];解放军信息工程大学;2008年
6 刘冬梅;图像拼接算法研究[D];西安电子科技大学;2008年
,本文编号:2399049
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2399049.html