基于面向对象分类的高分辨率遥感影像变化检测研究
[Abstract]:With the development of economy and society and the acceleration of urbanization, the extent and depth of land use has been increased day by day. The structure of land use has undergone profound changes, and the natural resources such as cultivated land, water area and so on have been reduced continuously, while the land for construction has been used. Social resources, such as roads, are increasing. Therefore, timely understanding of land use is of great significance to China's economic construction and environmental protection. With the development of remote sensing and information processing technology, remote sensing technology is developing towards high spatial resolution, high spectral resolution and high time resolution. Therefore, exploring new methods for land use change detection in high spatial resolution remote sensing images is a hot issue. In this paper, the problem of threshold determination in change detection is studied, which effectively avoids the subjectivity and complexity of the determination of change threshold, and at the same time, it can clearly obtain the variation of various categories. Based on the idea of superposition analysis, a new object containing change information is obtained by overlaying the classified vector layer with two periods of high score 1 image, and the change type is defined directly according to the superposition result. Each new object is classified by fuzzy classification method, and change detection is completed. In this study, we first need to divide the image into different image object layers; then analyze and extract the features of objects, establish classification rules, and carry out multi-level fuzzy classification; finally, use the idea of superposition analysis to complete change detection. Using error matrix and consistency index of different classes to evaluate the result of change detection, through analysis, the detection probability of change detection method in this paper is 88.399.The false alarm rate is 11.611.The false alarm rate is 8.04. The total detection error was 19.65; The detection accuracy of each class is above 80%, only a few classes have low precision and error, which need to be further improved. In general, the method of change detection in this paper avoids the subjectivity and complexity of determining the threshold of change, effectively reflects the regional changes, and provides a favorable basis for macro-monitoring of land use.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 冯文卿;张永军;;利用多尺度融合进行面向对象的遥感影像变化检测[J];测绘学报;2015年10期
2 于信芳;罗一英;庄大方;王世宽;王勇;;土地覆盖变化检测方法比较——以内蒙古草原区为例[J];生态学报;2014年24期
3 冯莞舒;;基于特征点的影像匹配[J];电子测试;2014年17期
4 佃袁勇;方圣辉;姚崇怀;;一种面向地理对象的遥感影像变化检测方法[J];武汉大学学报(信息科学版);2014年08期
5 夏朝旭;何政伟;于欢;王东辉;叶娇珑;;面向对象的土地覆被变化检测研究[J];遥感技术与应用;2014年01期
6 吴漾;高波;;结合指数特征和SVM算法的遥感影像土地利用变化检测[J];测绘技术装备;2013年04期
7 吴俊政;严卫东;倪维平;边辉;;基于图像融合与多尺度分割的目标级变化检测[J];电光与控制;2013年12期
8 马红;梁建国;;基于马尔可夫链模型的土地利用变化检测[J];城市勘测;2013年04期
9 朱俊杰;杜小平;范湘涛;郭华东;;图像多尺度边缘检测及图像多尺度分割研究[J];地理与地理信息科学;2013年02期
10 王勇;;基于遥感影像的城市土地利用变化检测研究[J];城市勘测;2012年06期
相关博士学位论文 前3条
1 王琰;基于像斑统计分析的高分辨率遥感影像土地利用/覆盖变化检测方法研究[D];武汉大学;2012年
2 张汉松;基于对象的海岸带地物变化遥感检测技术的研究[D];浙江大学;2010年
3 黄昕;高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D];武汉大学;2009年
相关硕士学位论文 前10条
1 曾子芳;基于变化矢量分析法的遥感影像土地利用变化检测研究[D];重庆交通大学;2013年
2 段赛仙;基于多时相遥感影像的土地利用变化检测研究[D];昆明理工大学;2013年
3 许宏伟;基于面向对象的高分辨率遥感影像变化检测方法研究[D];北京师范大学;2014年
4 康萌萌;基于共享特征的高分辨率遥感影像多层次分类研究[D];上海交通大学;2013年
5 宋碧霄;遥感图像条带去除方法研究[D];西安电子科技大学;2013年
6 蒋永涛;基于QuickBird影像土地利用信息提取研究[D];四川农业大学;2009年
7 齐义娜;面向对象的高分辨率遥感影像信息提取与尺度效应分析[D];东北师范大学;2009年
8 闫利会;喀斯特石漠化地表遥感信息自动提取研究[D];贵州师范大学;2008年
9 班守峰;遥感图像与GIS数据变化检测的研究[D];哈尔滨理工大学;2008年
10 李武跃;遥感影像纹理特征提取及其定量分析[D];上海交通大学;2008年
,本文编号:2407261
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2407261.html