基于非平稳表示模型的高光谱影像去噪方法研究
[Abstract]:At present, hyperspectral remote sensing technology has been developed rapidly and widely used. In order to obtain high quality image data, the image quality can be improved by image processing under the condition of limited instrument and equipment. In order to solve the problem of noise impact on the acquisition of image data, de-noising of hyperspectral image data becomes an indispensable step in image processing. In this paper, a method of hyperspectral image denoising based on nonstationary representation model is proposed. In hyperspectral images, for a single pixel, it has a complete spectral curve from the perspective of spectral dimension, which can be used to distinguish the type of ground objects contained in the surface corresponding to the pixel. From the spatial dimension, the location information of the pixel on the ground and its arrangement and combination with other pixels in space can be obtained, which is the unique feature of hyperspectral images. Because of the low spatial resolution of the sensor, each pixel corresponds to a wide range of ground and contains more ground objects. The spectral curve of each pixel is a mixture of the spectral curves of a variety of ground objects. In order to solve this problem, using the unique characteristics of hyperspectral image data to decompose the mixed pixel, get the "real" end element value and abundance value, and then reconstruct the image to get the de-noised hyperspectral image. This is a denoising method based on mixed spectral decomposition. The non-stationary representation method proposed in this paper is further studied on the basis of the noise removal method based on the mixed spectral decomposition. The main contents are as follows: 1. According to the linear spectral mixing model, These pixels and their weights are used in the intrinsic representation demultiplexing method, the central pixel is decomposed with the idea of unmixing, the "real" end element value and the abundance value are reconstructed, and the hyperspectral image is restored. That is, the de-noised image. 2. Aiming at the spatial nonstationarity of hyperspectral image data, this paper relies on the spatial non-stationary modeling method proposed by Fuentes et al. The nonlocal mean method is used to find pixels with high similarity to the center pixel, and the similarity between the blocks is calculated by Markov distance and Euclidean distance respectively. 3. Experiments are carried out using simulated hyperspectral data and real hyperspectral data. The images before and after denoising were evaluated qualitatively and quantitatively. The peak signal-to-noise ratio (PSNR), structural similarity, root mean square error (RMS) and signal-to-noise ratio (SNR) of real images are calculated respectively. The experimental results show that the proposed method is robust to the hyperspectral image denoising at the same time in spectral dimension and spatial dimension. Compared with other methods, the proposed method in this paper is robust. Can retain more spatial texture information of the image.
【学位授予单位】:中国地质大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 陈晋;马磊;陈学泓;饶玉晗;;混合像元分解技术及其进展[J];遥感学报;2016年05期
2 张兵;;高光谱图像处理与信息提取前沿[J];遥感学报;2016年05期
3 童庆禧;张兵;张立福;;中国高光谱遥感的前沿进展[J];遥感学报;2016年05期
4 王合玲;张辉国;吕光辉;;艾比湖流域土壤有机质与土壤因子响应关系的空间非平稳性分析[J];水土保持研究;2016年02期
5 马文武;侯妙乐;胡云岗;;基于地面高光谱遥感的石碑特征信息提取[J];北京建筑大学学报;2015年02期
6 陶中平;胡先莉;王茂芝;张小东;程宾洋;;高光谱岩心数据管理及其分析[J];地质力学学报;2015年02期
7 印佳;杜战战;;基于主成分分析的高光谱遥感图像非局部去噪[J];现代电子技术;2015年11期
8 吴建峰;黄树彩;康红霞;凌强;吴潇;;高光谱成像技术在天基导弹预警探测中的应用[J];飞航导弹;2015年02期
9 李美凌;邓飞;刘颖;祁亨年;张晓;;基于高光谱图像的水稻种子活力检测技术研究[J];浙江农业学报;2015年01期
10 徐冬;孙蕾;罗建书;;结合NAPCA和复小波变换的高光谱遥感图像去噪[J];红外与激光工程;2015年01期
相关博士学位论文 前3条
1 曾志高;概率模型及其在视频对象处理中的应用[D];武汉大学;2012年
2 孙伟峰;基于非局部信息的信号与图像处理算法及其应用研究[D];山东大学;2010年
3 曾智勇;基于内容图像数据库检索中的关键技术研究[D];西安电子科技大学;2006年
相关硕士学位论文 前3条
1 蔡茂知;基于非线性混合模型的高光谱波谱信号提取方法研究[D];电子科技大学;2016年
2 张天宇;基于高光谱遥感的黄土覆盖区油气微渗漏信息提取[D];吉林大学;2015年
3 段海军;基于Markov随机场的上下文图像分类与纹理分割研究[D];昆明理工大学;2013年
,本文编号:2409111
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2409111.html