当前位置:主页 > 科技论文 > 测绘论文 >

基于空间相似性的城市地下管线空间数据匹配方法研究

发布时间:2019-03-12 18:13
【摘要】:地下管线是指建设于地下的供水、排水、燃气、燃油、热力、电力、通讯、照明、广播电视、交通信号、工业物料、公共视频监控等专用管线及其附属设施,是城市物质流、能量流和信息流的主要通道,是城市重要的基础设施和“生命线”。近年来,随着“数字城市”建设的推进,地下管线地理信息日益成为城市空间信息资源的核心内容,地下管线地理信息系统也逐步成为城市规划、建设和管理的支撑应用。受管线管理模式及管线空间数据应用目的差异的影响,当前城市管线信息化中普遍存在两种类型的管线地理信息系统应用:以综合管线管理和主要为城市规划服务的综合管线地理信息系统;以专业管线管理和主要为管线权属单位管线运维服务的专业管线地理信息系统。这两类管线应用虽面对同样区域内的同一管线对象,但由于受GIS平台、技术条件和应用目的等的影响,却形成了明显不同语义、空间数据模型和空间数据精度的两类数据资源。通常情况下,综合管线数据位置精度高但语义信息有限,专业管线数据位置精度低但语义内容丰富。面对两类管线空间数据资源,准确的数据匹配可以有效弥补两者之间的差异,实现管线数据的共享与融合,改善城市管线数据的重复探测,降低综合管线数据的生产成本,提高专业管线数据的质量。本文尝试利用空间相似性、空间数据匹配相关理论和方法,开展综合管线和专业管线空间数据匹配方法的研究,以实现城市地下管线空间数据的共享和综合利用。本文主要的研究内容与研究成果包括:(1)分析了综合管线和专业管线空间数据的差异的成因,包括探测误差、管线变更等客观原因和不同的数据需求和应用目的等主观原因。这些差异成因产生了不同类型的数据差异,主要有数据来源和数据精度差异、数据模型差异和语义差异。(2)在一般的矢量数据匹配类型的基础上,针对管线数据的几何类型、数据特征以及数据匹配目标,按几何要素类型和映射数量关系确定了管线数据匹配的类型;分析了城市地下管网的分布特征,在此基础上对管线数据按沿道路骨架管线、小区内树状管线以及独立管线进行了分层次划分。(3)提出了管线数据空间相似性的度量方法,包括语义相似性、几何相似性和拓扑关系相似性三个方面,采用基于本体的语义相似性度量方法,度量了不同分类表达下的综合管线和专业管线中概念之间的相似性,采用空间位置、方向、长度、关联度等特征项确定了几何相似性和拓扑关系相似性定量描述方式;以空间相似性为匹配判断依据,结合管线数据分层次表达,设计了管线数据从整体匹配到精确匹配的匹配策略,在匹配过程中·根据管线数据特点调整相似性指标权重。(4) 以南京市某片区的综合管线(天然气)和专业管线(天然气)数据为实验对象,建立了用于语义相似性度量的综合管线和专业管线本体,设计了管线数据匹配的流程,并通过管线数据匹配原型系统开发,对本文提出的匹配方法进行了验证和分析。
[Abstract]:The underground pipeline refers to the special pipeline and its auxiliary facilities, such as water supply, drainage, gas, fuel, heat, power, communication, lighting, radio and television, traffic signal, industrial material, public video monitoring, etc., which are built in the underground, and is the main channel of the city material flow, energy flow and information flow. It's the city's important infrastructure and "Lifeline". In recent years, with the development of the "digital city" construction, the underground pipeline geographic information becomes the core of the urban spatial information resource, and the underground pipeline geographic information system has gradually become the supporting application of the urban planning, construction and management. Affected by the difference of the pipeline management mode and the application of pipeline spatial data, there are two types of pipeline GIS application in the current city pipeline information: the integrated pipeline management and the integrated pipeline geographic information system mainly for urban planning service; Professional pipeline management system, which is mainly used for pipeline operation and maintenance service of pipeline ownership unit. The two types of pipeline applications face the same pipeline object in the same area, but because of the influence of the GIS platform, the technical condition and the purpose of application, the two types of data resources with different semantics, spatial data model and spatial data precision are formed. In general, that position precision of the comprehensive pipeline data is high, but the semantic information is limited, and the position precision of the professional pipeline data is low, but the semantic content is rich. In the face of two types of pipeline spatial data resources, the accurate data matching can effectively make up for the difference between the two pipeline data, realize the sharing and integration of pipeline data, improve the repeated detection of the urban pipeline data, reduce the production cost of the comprehensive pipeline data, and improve the quality of the professional pipeline data. In this paper, the spatial similarity and spatial data matching theory and method are used to study the matching method of spatial data of comprehensive pipeline and professional pipeline, so as to realize the sharing and comprehensive utilization of spatial data of urban underground pipeline. The main research contents and research results of this paper are as follows: (1) The causes of the difference of the spatial data of the comprehensive pipeline and the professional pipeline are analyzed, including the objective reasons such as detection error and pipeline change, and the subjective reasons such as different data requirements and application objectives. These difference causes different types of data difference, mainly including data source and data precision difference, data model difference and semantic difference. (2) on the basis of the general vector data matching type, the type of the pipeline data matching is determined according to the geometric type, the data characteristic and the data matching target of the pipeline data, the distribution characteristics of the urban underground pipe network are analyzed, On this basis, the pipeline data is divided into sub-hierarchy along the pipeline of the road, the tree-shaped pipeline in the cell and the independent pipeline. (3) a method for measuring the similarity of pipeline data space is proposed, which comprises three aspects of semantic similarity, geometric similarity and topological relation similarity, the similarity between the concepts in the comprehensive pipeline and the professional pipeline under different classification expressions is measured, the geometric similarity and the topological relation similarity quantitative description mode are determined by adopting the characteristic items such as spatial position, direction, length and degree of association, and the space similarity is the matching judgment basis, Based on the hierarchical representation of pipeline data, the matching strategy of the pipeline data from the whole to the exact match is designed, and the weight of the similarity index is adjusted according to the characteristics of the pipeline data in the matching process. (4) Based on the comprehensive pipeline (natural gas) and professional pipeline (natural gas) data of a certain area in Nanjing, a comprehensive pipeline and a professional pipeline ontology for semantic similarity measurement are established, and the flow of pipeline data matching is designed. The matching method proposed in this paper is verified and analyzed through the development of the pipeline data matching prototype system.
【学位授予单位】:南京师范大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P208;TU990.3

【相似文献】

相关期刊论文 前8条

1 郭黎;崔铁军;张斌;;道路网数据变化检测与融合处理技术[J];地理信息世界;2011年05期

2 黄蔚;蒋捷;;多尺度矢量简单几何实体数据几何匹配方法研究[J];遥感信息;2011年01期

3 李洪省;郭庆胜;刘纪平;郑春燕;;基于数据匹配的建筑物群典型化快速算法[J];武汉大学学报(信息科学版);2006年07期

4 燕军,刘堂晏,,孙嘉戍,朱仕军;岩石物理研究中数据匹配方法的改进[J];测井技术;1995年05期

5 郭黎;崔铁军;王豪;郭健;;基于面状要素拓扑关系的数据匹配技术研究[J];测绘科学;2010年01期

6 廖一兰;王劲峰;马家奇;戚晓鹏;;基于BPM-BM算法的地名数据匹配[J];测绘通报;2008年06期

7 胡云岗;陈军;赵仁亮;李志林;;地图数据缩编更新中道路数据匹配方法[J];武汉大学学报(信息科学版);2010年04期

8 ;[J];;年期

相关会议论文 前1条

1 胡云岗;陈军;李志林;赵仁亮;;用于缩编更新的道路数据匹配方法[A];中国测绘学会2006年学术年会论文集[C];2006年

相关硕士学位论文 前3条

1 何源;基于空间相似性的城市地下管线空间数据匹配方法研究[D];南京师范大学;2013年

2 杨来彦;地址数据匹配整合应用研究[D];重庆大学;2005年

3 陈炉军;动态深度数据匹配及其应用[D];哈尔滨工业大学;2012年



本文编号:2439033

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2439033.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d8062***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com