部分变量误差模型的整体抗差最小二乘估计
发布时间:2019-06-09 14:24
【摘要】:部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。
[Abstract]:The weighted global least squares (weighted total least-squares,WTLS (weighted total least-squares,WTLS) estimation of partial variable error model (partial EIV model) does not have the ability to resist gross errors. In view of the fact that gross errors may appear in both observed values and coefficient matrices at the same time, based on the two-step iterative method of WTLS estimation of partial variable error model, the equivalent weight method of robust M estimation is used in this paper. In this paper, a global robust least square (TRLS) estimation method is developed, and the weight reduction factor is determined by uniform maximum efficiency statistics. According to the characteristics of two-step iterative solution of WTLS estimation, two different weight reduction schemes are designed: the first scheme is not to reduce the weight of the observed value, but only to the coefficient matrix when the element of the coefficient matrix is estimated. The second scheme is to reduce the weight of the coefficient matrix as well as the observed values when the elements of the coefficient matrix are estimated. Through the calculation and analysis of simulated 2D affine transformation and linear fitting examples, the results show that the first scheme is superior to the second scheme, and is superior to the robust estimation based on residual and post-checking unit weight variance and the existing variable error model robust estimation.
【作者单位】: 信息工程大学地理空间信息学院;信息工程大学理学院;
【基金】:国家自然科学基金(41174005;41474009)~~
【分类号】:P207
本文编号:2495621
[Abstract]:The weighted global least squares (weighted total least-squares,WTLS (weighted total least-squares,WTLS) estimation of partial variable error model (partial EIV model) does not have the ability to resist gross errors. In view of the fact that gross errors may appear in both observed values and coefficient matrices at the same time, based on the two-step iterative method of WTLS estimation of partial variable error model, the equivalent weight method of robust M estimation is used in this paper. In this paper, a global robust least square (TRLS) estimation method is developed, and the weight reduction factor is determined by uniform maximum efficiency statistics. According to the characteristics of two-step iterative solution of WTLS estimation, two different weight reduction schemes are designed: the first scheme is not to reduce the weight of the observed value, but only to the coefficient matrix when the element of the coefficient matrix is estimated. The second scheme is to reduce the weight of the coefficient matrix as well as the observed values when the elements of the coefficient matrix are estimated. Through the calculation and analysis of simulated 2D affine transformation and linear fitting examples, the results show that the first scheme is superior to the second scheme, and is superior to the robust estimation based on residual and post-checking unit weight variance and the existing variable error model robust estimation.
【作者单位】: 信息工程大学地理空间信息学院;信息工程大学理学院;
【基金】:国家自然科学基金(41174005;41474009)~~
【分类号】:P207
【相似文献】
相关期刊论文 前10条
1 刘经南;曾文宪;徐培亮;;整体最小二乘估计的研究进展[J];武汉大学学报(信息科学版);2013年05期
2 黄幼才;重复中值估计及其在坐标变换中的应用[J];武汉测绘科技大学学报;1988年01期
3 刘经南,姚宜斌,施闯;基于等价方差-协方差阵的稳健最小二乘估计理论研究[J];测绘科学;2000年03期
4 李桂苓,万剑华,陶华学;用差商代替导数的非线性最小二乘估计[J];武汉大学学报(信息科学版);2001年02期
5 宋迎春;惠沈盈;刘杰;林东方;;基于分枝定界算法的整数最小二乘估计[J];武汉大学学报(信息科学版);2011年10期
6 范龙;翟国君;白鸽;;基于抗差最小二乘估计的载体速度计算方法[J];测绘学报;2011年S1期
7 王新洲;在无偏估计类中改进最小二乘估计的方法[J];武汉测绘科技大学学报;1995年01期
8 张同刚;岑敏仪;冯义从;杨容浩;任自珍;;采用截尾最小二乘估计的DEM匹配方法[J];测绘学报;2009年02期
9 陶华学,,董烈镛;不同类型观测数据的动态最小二乘估计[J];山东矿业学院学报;1996年04期
10 马大喜;测量平差两类估计准则及精度比较[J];南方冶金学院学报;2000年02期
本文编号:2495621
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2495621.html