基于铀酰配合物共振光散射法测定1,6-二磷酸果糖和铀
发布时间:2018-01-16 23:11
本文关键词:基于铀酰配合物共振光散射法测定1,6-二磷酸果糖和铀 出处:《南华大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 1 6-二磷酸果糖 铀 共振光散射 salophen 纳米金 双极配体
【摘要】:1,6-二磷酸果糖(F-1,6-BP)和铀对人体健康和环境有着重要的影响,因此建立快速、灵敏度高、选择性好的检测F-1,6-BP和铀的新方法具有十分重要的意义。为此,本文合成了羧基salophen和磷酸乙醇-酰胺基-salophen(PAS),利用这两种配体分别建立了基于铀酰配合物修饰的金纳米粒子测定F-1,6-BP的共振光散射(RLS)分析法和基于铀酰与PAS组装形成超分子聚合物测定铀的RLS分析法,为F-1,6-BP和铀的检测提供了新的手段。本文第一章绪论部分首先介绍了1,6二磷酸果糖(F-1,6-BP)和铀的现有检测方法的特点,接着介绍了Salophen基本性质和应用研究、纳米金的性质和应用以及RLS技术的基本原理和应用。本文第二章中我们制备了一种修饰金纳米粒子,铀酰-salophen-半胱胺-金纳米粒子(U-Sal-Cy-GNPs),并以此为探针建立了一种具有高灵敏度的RLS法检测溶液中F-1,6-BP的含量,该方法无须经过分离可直接检测。其中,U-Sal-Cy-GNPs的制备按照以下几个步骤进行,首先将半胱胺结合在纳米金的表面形成半胱胺包络的纳米金(Cy-GNPs),接着将Cy-GNPs与羧基salophen通过酰胺反应形成Sal-Cy-GNPs,最后铀酰离子与Sal-Cy-GNPs上的四齿配体发生配位反应,由于铀酰-salophen能特异性结合磷酸基团,一分子的FBP分子很容易连接两个U-Sal-Cy-GNPs,从而引起GNPs聚集,导致强烈的RLS信号产生,根据体系RLS的变化来检测F-1,6-BP的量,并对实验的各项影响因素进行了优化。结果表明,我们的方法测定的F-1,6-BP浓度线性范围为2.5~75 nmol/L,检出限为0.91 nmol/L。该方法已成功应用到实际样品的检测,回收率在96.3%~102.5%之间。本文第三章我们合成了一种既含有四齿配位基又含有单齿配位基的双极配体,磷酸乙醇基-酰胺基-salophen(PAS),其四齿配位基和单齿配位基分别为salophen单元和磷酸基团,该双极配体能与铀(Ⅵ)或铀酰离子配位自组装形成金属-超分子聚合物,导致体系的RLS信号显著增强,由此建立了RLS法检测痕量铀的新方法。在最适宜的条件下,我们的方法有较高的灵敏度和良好的选择性,测得铀(Ⅵ)检出限为0.24 ng/m L。该方法已成功用于实际样品的检测,回收率在97.1%-102.6%之间。
[Abstract]:Fructose-6-diphosphate (FDP) and uranium have important effects on human health and environment. Therefore, a rapid, sensitive and selective detection of F-1 has been established. The new methods of 6-BP and uranium are of great significance. Therefore, carboxyl salophen and ethanol-amide-phosphate salophenone were synthesized. The two ligands were used to establish the gold nanoparticles modified with uranyl complexes for the determination of F-1. The resonance light scattering (RLS) analysis of 6-BP and the RLS analysis of uranium based on the assembly of uranyl and PAS into supramolecular polymers are F-1. In the first chapter of this paper, the author introduces the characteristics of the existing methods for the detection of uranium and fructose 1h6 diphosphate (F-1O6-BPP) as well as the characteristics of the existing methods. Then the basic properties and applications of Salophen, the properties and applications of gold nanoparticles, and the basic principles and applications of RLS technology are introduced. In the second chapter, we prepare a modified gold nanoparticles. Uranyl-salophena-cysteamine gold nanoparticles (U-Sal-Cy-GNPs) were used as probes to establish a highly sensitive RLS method for the determination of F-1 in solution. The content of 6-BP can be detected directly without separation. The preparation of U-Sal-Cy-GNPs is carried out according to the following steps. First, cysteamine was bound to the surface of gold nanoparticles to form cysteamine envelop (Cy-GNPs). Cy-GNPs was then reacted with carboxyl salophen to form Sal-Cy-GNPs via amides. Finally, uranyl ions reacted with tetradentate ligands on Sal-Cy-GNPs because uranyl-salophen could specifically bind phosphate groups. One molecule of FBP molecules can easily connect two U-Sal-Cy-GNPs, thus causing the aggregation of GNPs and the production of strong RLS signals. According to the change of system RLS, the amount of F-1N 6-BP was detected, and the influencing factors of the experiment were optimized. The results showed that the F-1 was determined by our method. The linear range of 6-BP concentration is 2.5 ~ 75 nmol / L and the detection limit is 0.91 nmol / L. the method has been successfully applied to the detection of real samples. The recovery was between 96.3% and 102.5%. In Chapter 3, we synthesized a bipolar ligand containing both tetradentate and monodentate coordination groups. The four and monodentate coordination groups were salophen unit and phosphate group, respectively. The bipolar ligand was able to self-assemble with uranium (鈪,
本文编号:1435231
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1435231.html
教材专著