近红外漫反射光谱法快速检测苯磺酸氨氯地平片辅料含量(英文)
发布时间:2018-02-22 22:19
本文关键词: 近红外光谱 辅料 支持向量机回归分析 随机青蛙法 苯磺酸氨氯地平片 出处:《光子学报》2017年01期 论文类型:期刊论文
【摘要】:将近红外光谱技术和化学计量学相结合快速检测苯磺酸氨氯地平片辅料含量.通过随机青蛙法、变量投影重要性和竞争自适应重加权采样筛选特征波长变量点,采用9种光谱预处理方法对原始光谱进行处理后,分别建立了偏最小二乘法模型和支持向量回归分析模型,并将这两种模型进行了比较.应用优选模型对样品进行了测试,结果表明:对于所涉及的样本,在最优特征波长变量选择上,随机青蛙法效果较好;在模型预测结果上,与支持向量回归分析模型相比,5个指标的偏最小二乘法定量模型的决定系数,预测均方根误差评价参数效果较好,相对分析误差值均大于3.0.样品测试值与实测值标准误差均小于1.30,配对t检验表明,在a=0.05显著性水平上,两者无显著性差异.因此,可采用近红外漫反射光谱法用于苯磺酸氨氯地平片辅料含量的快速检测,该方法重复性、中间精密度、线性、精确性良好,且可为其他药用辅料含量快速检测提供借鉴.
[Abstract]:Rapid detection of amlodipine benzenesulfonate excipient content by means of near infrared spectroscopy and chemometrics. By means of random frog method, variable projection importance and competitive adaptive re-weighted sampling were used to screen characteristic wavelength variable points. After processing the original spectrum with 9 spectral pretreatment methods, the partial least square model and the support vector regression model were established, and the two models were compared. The results show that for the samples involved, the random frog method is effective in selecting the optimal characteristic wavelength variables, and in the prediction results of the model, Compared with the support vector regression model, the determination coefficient of the partial least square quantitative model of five indexes is better than that of the support vector regression model, and the evaluation parameters of root-mean-square error prediction are better than that of the support vector regression model. The error of relative analysis is all greater than 3.0.The standard error of sample test value and actual value is less than 1.30. The paired t test shows that there is no significant difference between the two at the significant level of aaqian 0.05, so, there is no significant difference between them. The near infrared diffuse reflectance spectroscopy can be used to detect the excipient content of amlodipine benzenesulfonate tablets quickly. The method has the advantages of repeatability, intermediate precision, linearity, good accuracy, and can be used as a reference for the rapid determination of other medicinal excipients.
【作者单位】: 佳木斯大学药学院;大连达硕信息技术有限公司;
【基金】:The Postgraduate Student Scientific Innovation Project in Jiamusi University(No.LM2015_082)
【分类号】:R927.2;O657.3
【相似文献】
相关期刊论文 前2条
1 刘国仕;何亮云;薛建华;高营飞;;灰色线性回归组合模型在沉降监测中的应用[J];长沙理工大学学报(自然科学版);2012年04期
2 ;[J];;年期
相关会议论文 前1条
1 庄佳尧;张强;;模糊回归分析模型对景气预警指数的模糊预测[A];中国企业运筹学[C];2009年
相关硕士学位论文 前1条
1 许丞;Hadoop云平台综合优化[D];四川师范大学;2014年
,本文编号:1525451
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1525451.html
教材专著