柔性电子中PDMS的力学性能及粘接研究
发布时间:2018-03-10 09:43
本文选题:柔性电子 切入点:PDMS 出处:《扬州大学》2017年硕士论文 论文类型:学位论文
【摘要】:柔性电子是一门新兴的技术,柔性电子技术的发展很有可能带来一场电子技术革命,极大的改变我们的生活。早期研究者们试图用柔性有机材料替代传统的无机半导体,目前主流的设计理念是将无机半导体例如硅置于柔性有机基体之上,通过力学结构设计并利用基体的柔性实现整体的可弯曲与可延展,这样做可使柔性电子产品兼备轻、薄与高可靠性等特点。柔性电子目前尚处于初步阶段,很多理论还未建立,实验还不完善,因此十分有必要对其进行进一步探索和研究。针对将无机半导体置于柔性有机基体之上这种设计思路,主要有三种典型的结构:波纹状结构、精确受控屈曲结构和岛桥结构。本文将沿着波纹状结构展开研究,主要探索柔性基板材料PDMS的相关力学性能以及PDMS的表面改性方法。首先成功探索了一套制做柔性基体PDMS的工艺流程,PDMS由两种溶液混合后固化形成,不同的混合比将产生不同性能的PDMS。接着利用组装的测力装置对PDMS做拉伸实验,测试弹性模量,绘制拉伸曲线,PDMS在2%的变形范围内一直处于线弹性小变形阶段,胡克定律完全适用。通过数字散斑技术测量了 PDMS的泊松比以及平直状PDMS在拉伸状态下表面不同点的应变值。接下来对比了紫外照射改性和等离子改性对PDMS的影响,利用测角软件测试了经改性后PDMS表面的接触角,结果显示等离子体改性更加快捷高效。利用等离子机成功键合了 PDMS,分析了功率、气体流量、处理时间、表面清洁度等参数对键合效果的影响,利用拉伸机、数字散斑和有限元比较了键合后PDMS的键合强度。等离子体键合传统的方法是采用纯氧或纯氮,键合后通常需用重物按压数小时。本文则采用了空气,使PDMS能够在极短的时间内键合并拥有足够的键合强度。最后利用有限元软件分析了正弦型波纹结构的PDMS所受应力应变,比较了波幅、波长、厚度等几何参数对最大应力应变的影响以及波峰波谷及介于波峰波谷的中部位置处各点各方向的应力应变。本文工作进一步丰富了柔性电子领域中关于PDMS基体制备、材料性能测试、表面改性及键合等问题的实验方法研究,包括工艺过程的认知,有助于类似问题的探究及相关机理的澄清。
[Abstract]:Flexible electronics is a new technology, the development of flexible electronics technology is likely to bring about an electronic technology revolution, greatly change our lives. Early researchers tried to replace traditional inorganic semiconductors with flexible organic materials. At present, the mainstream design idea is to place inorganic semiconductors such as silicon on the flexible organic matrix, and to design and utilize the flexibility of the matrix to achieve the bending and extensibility of the whole by means of mechanical structure design, which can make flexible electronic products both light and light. The characteristics of thin and high reliability. The flexible electron is still in the initial stage, many theories have not been established, and the experiment is not perfect. Therefore, it is necessary to further explore and study it. There are three typical structures for the design of inorganic semiconductors on flexible organic matrix: corrugated structure. The exact controlled buckling structure and island bridge structure. This paper will study along the corrugated structure. The related mechanical properties of flexible substrate material PDMS and the surface modification method of PDMS were studied. Different mixing ratio will produce PDMS with different properties. Then the tensile test of PDMS is done by using the assembled force measuring device, the modulus of elasticity is tested, and the drawing curve of PDMS is always in the small deformation stage of linear elasticity in the deformation range of 2%. Hooke's law is fully applicable. Poisson's ratio of PDMS and strain value of surface of straight PDMS under tensile state are measured by digital speckle technique. The effects of external irradiation modification of violet and plasma modification on PDMS are compared. The contact angle of the modified PDMS surface was tested by angle measuring software. The results show that the plasma modification is faster and more efficient. The influence of surface cleanliness and other parameters on bonding effect was studied. The bonding strength of PDMS after bonding was compared by means of drawing machine, digital speckle speckle and finite element method. The traditional method of plasma bonding was pure oxygen or pure nitrogen. In this paper, air is used to make PDMS have sufficient bonding strength in a very short time. Finally, the stress and strain of sinusoidal corrugated PDMS are analyzed by using finite element software. The amplitudes and wavelengths are compared, The effect of geometric parameters such as thickness on the maximum stress and strain, and the stress and strain in all directions of the peak trough and the point between the middle of the peak trough. The work in this paper further enriches the preparation of PDMS matrix in the field of flexible electronics. The experimental research on the properties of materials, surface modification and bonding, including the cognition of the process, is helpful to the exploration of similar problems and the clarification of related mechanisms.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O634.41
【参考文献】
相关期刊论文 前10条
1 李学通;仝洪月;赵越;杜凤山;;柔性电子器件的应用、结构、力学及展望[J];力学与实践;2015年03期
2 汪炳伟;孙东明;;碳纳米管和石墨烯在柔性电子器件中的应用[J];印制电路信息;2013年12期
3 闫思家;彭仁军;冯波;高建双;;一种基于FPGA的激光散斑实时测量目标角振动的新方法[J];电子器件;2012年02期
4 许巍;杨金水;王飞;卢天健;;含曲线型膜基界面的高分子基金属薄膜延展性能[J];固体力学学报;2011年01期
5 潘兵;吴大方;夏勇;;数字图像相关方法中散斑图的质量评价研究[J];实验力学;2010年02期
6 许巍;卢天健;;柔性电子系统及其力学性能[J];力学进展;2008年02期
7 杨国标;朱启荣;章彰;吴愧;;数字散斑相关法仪器化的应用研究[J];现代科学仪器;2007年06期
8 潘兵;谢惠民;续伯钦;戴福隆;;应用数字图像相关方法测量含缺陷试样的全场变形[J];实验力学;2007年Z1期
9 程嘉;朱煜;汪劲松;;感应耦合等离子体刻蚀机二维放电模拟[J];半导体学报;2007年06期
10 叶美英,方群,殷学锋,方肇伦;聚二甲基硅氧烷基质微流控芯片封接技术的研究[J];高等学校化学学报;2002年12期
相关硕士学位论文 前1条
1 杨城鑫;基于氮气等离子体技术的PDMS表面改性研究[D];西南交通大学;2016年
,本文编号:1592793
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1592793.html
教材专著