当前位置:主页 > 科技论文 > 化学论文 >

二苯基烷基磷与六氯化钨配合物的合成及其催化双环戊二烯聚合研究

发布时间:2018-03-29 10:49

  本文选题:双环戊二烯 切入点:开环移位聚合 出处:《河南科技大学》2017年硕士论文


【摘要】:聚双环戊二烯(PDCPD)是一种综合性能优异的新型材料,它是由双环戊二烯(DCPD)通过开环移位聚合而成。能够催化DCPD聚合的催化剂有许多,但最常用的是烷基铝与钨酚化合物所组成的双组份催化体系。主催化剂钨酚化合物对氧气和水汽敏感,容易失活。为了提高主催化剂在空气中的稳定性以及在DCPD中的溶解性,本课题采用高位阻的有机膦配体与六氯化钨(WCl_6)配位,合成一类新型环境稳定型的配位催化剂,并以此催化DCPD聚合制备PDCPD。本文以三苯基膦(Ph_3P)为原料,合成了一系列高位阻有机膦配体二苯基丁基膦(Ph_2PC_4H_9)、二苯基己基膦(Ph_2PC_6H_(13))、二苯基辛基膦(Ph_2PC_8H_(17))、二苯基癸基膦(Ph_2PC_(10)H_(21))、二苯基十二烷基膦(Ph_2PC_(12)H_(25)),并用IR、~1H-NMR、~(13)C-NMR以及31P-NMR等方法对有机膦配体的结构进行了表征。将二苯基烷基膦和WCl_6进行配位反应,合成了五种新型二苯基烷基膦/六氯化钨配合物,并对其进行了表征,确证得到了预期的目标产物。以二苯基烷基膦/六氯化钨配合物为主催化剂(简称W催化剂),Et2Al Cl为助催化剂(简称Al催化剂)催化DCPD聚合,结果发现该配合物均具有较高的催化活性,并且在DCPD中溶解性较好、在空气中稳定性较好。系统地考察了主催化剂量、助催化剂量以及温度等因素对聚合反应的影响,探究了各催化剂催化DCPD聚合的最佳反应条件,并比较了五种催化剂的活性。结果表明:随着主催化剂、助催化剂量的增加以及反应温度的升高,DCPD聚合的凝胶时间逐渐减小;五种催化体系(碳链由短到长)催化DCPD聚合的最佳摩尔比(n(DCPD):n(W):n(Al))分别为:1600:1.2:24、1600:1.2:20、1600:1:20、1200:1:20、1200:1:22,由此可知,五种新型催化剂的催化活性顺序为:Ph_2PC_8H_(17)/WCl_6Ph_2PC_6H_(13)/WCl_6Ph_2PC_4H_9/WCl_6Ph_2PC_(10)H_(21)/WCl_6Ph_2PC_(12)H_(25)/WCl_6。以Ph_2PC_8H_(17)/WCl_6配合物为主催化剂,Et2AlCl为助催化剂催化DCPD聚合制备PDCPD,并对材料的力学性能进行检测,结果发现该材料的冲击强度为30kJ/m2,拉伸强度平均值为43.75MPa。
[Abstract]:Poly (dicyclopentadiene) (PDCPD) is a new material with excellent comprehensive properties. It is prepared by ring-opening shift polymerization of dicyclopentadiene (DCPD). There are many catalysts that can catalyze the polymerization of DCPD. But the most commonly used catalyst is the two-component catalytic system composed of alkyl aluminum and tungsten phenol compounds. The main catalyst is sensitive to oxygen and water vapor and is easily deactivated. In order to improve the stability of the main catalyst in air and the solubility of the main catalyst in DCPD, In this paper, a new type of environment-stable coordination catalyst was synthesized by the coordination of high resistance organic phosphine ligands with tungsten hexachloride (WClS6), which was used to catalyze the polymerization of DCPD to prepare PDCPDs. In this paper, triphenylphosphine Phosphate (Ph3P3) was used as the raw material. A series of high resistive organic phosphine ligands, diphenyl phosphine ligands, diphenyl hexyl phosphine ligands, diphenyl hexyl phosphine ligands, diphenyl hexyl phosphine ligands, Ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosphine, diphenyl hexyl phosphine, Ph2PC4H9, diphenyl hexyl phosphine, Ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosphine ligands, Ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosphine, Ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosphine, Ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosphine, diphenyl hexyl phosphine, ph2PC4H9, diphenyl hexyl phosphine, diphenyl hexyl phosph@@. The coordination reaction between diphenyl alkyl phosphine and WCl_6 was carried out. Five novel diphenyl alkyl phosphine / tungsten hexachloride complexes were synthesized and characterized. It was confirmed that the expected target product was obtained. The DCPD polymerization was catalyzed by diphenyl alkyl phosphine / tungsten hexachloride complex (W catalyst et 2AL Cl). The results showed that the complexes had higher catalytic activity, better solubility in DCPD and better stability in air. The effects of the amount of main catalyst, the amount of co-catalyst and temperature on the polymerization were systematically investigated. The optimum reaction conditions of each catalyst for DCPD polymerization were investigated, and the activity of five catalysts was compared. The results showed that the gel time of DCPD polymerization decreased with the increase of the amount of catalyst and the increase of reaction temperature. The optimum molar ratio of five catalytic systems (carbon chains from short to long) to catalyze DCPD polymerization is as follows: 1: 16 00: 1: 2: 24 16 00 1. 2: 20 20: 16 00 1: 1 1: 20 20: 1 1: 20 1: 20 20: 12: 1 22. The order of the catalytic activity of the five new types of catalysts is as follows:% Ph2PC8Hflesh 17 / WCl6Ph2PC6HJ / S / WCl6Ph2PC6H / S / S / WCl6Ph2Stud, and the results show that the impact strength of this material is 30kJ / m-2, and the average strength of the material is 43.75MPm2.The results show that the impact strength of the material is 30kJmrm2p2m2m2.The results show that the impact strength of this material is 30kJmrm2m2.The results show that the strength of the PDCPDs is 43.75MPm2.The results show that the impact strength of the PDCPDs is 30 kJs / m-2, and the average strength of the PDCPDs is 43.75MPm2.The order of the catalytic activity of the five new types of catalysts is as follows: 1: Ph2PC8Hac / WCl6Ph2AlCl as a catalyst for DCPD polymerization.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36;O631.5

【参考文献】

相关期刊论文 前10条

1 李凯;徐梵;冯露;张延武;;活性开环移位聚合在制备功能大分子中的应用[J];化学反应工程与工艺;2015年06期

2 李旭阳;陈国伟;高喜平;张玉清;;前沿聚合法制备聚双环戊二烯/纳米碳酸钙复合材料[J];高分子材料科学与工程;2015年09期

3 郭萌;李旭阳;赫玉欣;高喜平;张玉清;;双环戊二烯与乙烯-醋酸乙烯酯共聚物原位聚合共混[J];高分子材料科学与工程;2015年05期

4 王晓霞;胡培博;魏玉萍;;羟乙基纤维素负载三苯基膦-钯催化剂的合成及其在Suzuki偶联反应中的应用[J];化学与生物工程;2014年07期

5 刘桂华;叶青松;潘再富;余娟;沈善问;刘伟平;;反式-双(三苯基膦)二氯合钯(Ⅱ)的合成及其结构表征[J];云南化工;2013年02期

6 彭淑鸽;刘晓飞;樊昕洁;张玉清;;反应注射成型纳米CuS/PDCPD复合材料的制备与性能[J];复合材料学报;2013年02期

7 马捷;;双环戊二烯的市场分析及预测[J];化学工业;2012年07期

8 潘炳力;赵菁;张玉清;张永振;;聚双环戊二烯自润滑材料的高速干摩擦行为[J];摩擦学学报;2012年03期

9 刘少祯;高喜平;徐华;张玉清;;聚双环戊二烯/碳纤维复合材料的制备和力学性质[J];化学推进剂与高分子材料;2011年04期

10 宋超;高喜平;张玉清;张剑秋;;PDCPD/PS/MMT纳米复合材料的制备与性能研究[J];塑料工业;2011年01期

相关硕士学位论文 前5条

1 余华宁;聚双环戊二烯/聚苯乙烯互穿网络研究[D];河南科技大学;2013年

2 叶汝汉;含磷化合物核磁共振谱图的研究与应用[D];广东工业大学;2011年

3 余东升;聚双环戊二烯/纳米SiO_2复合材料的制备及表征[D];河南科技大学;2009年

4 姜通武;六氯化钨及其氧化物的芳基膦配合物催化DCPD聚合活性及PDCPD/MMT纳米复合材料性能研究[D];河南科技大学;2009年

5 郝银鸽;新型钼系开环移位催化剂的制备及其催化双环戊二烯聚合的研究[D];河南科技大学;2009年



本文编号:1680808

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/1680808.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户27853***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com