超音速气流法低温固相合成有机骨架类聚合物及机理研究
发布时间:2018-03-31 10:56
本文选题:超音速气流法 切入点:数学模型 出处:《西南科技大学》2017年硕士论文
【摘要】:固相反应作为绿色化学中重要组成部分,受到广泛关注。机械化学合成法作为固相化学合成的分支,受到越来越多的重视。传统的机械化学合成方法主要包括球磨法、研磨法、双螺旋挤压法、高压法以及微波辅助法,这些方法存在提供反应能量低、经济成本高、反应时间长、不能连续循环及难以实现工业化生产等缺陷。为此,本课题组提出超音速气流低温固相合成,充分利用流体力学和动力学反应原理,通过超音速气流加速和碰撞技术实现低温固相反应合成中的能量传递,为固相反应合成开辟了新的技术途径,该方法具有连续循环、高效快速、操作简单、环境友好、适合大规模合成等优点。本文主要研究内容包括超音速气流低温固相反应装置的改进,利用超音速气流法低温固相合成不同的骨架类聚合物,探究超音速气流低温固相合成能够适应的反应体系,同时探究不同实验条件对实验的影响,探究机理及建立动力学数学模型。(1)在实验的过程中,不断发现超音速气流低温固相反应装置的不足,提出改进方案,不断改进装置,提高能量利用率和反应速率,满足更多固相反应合成在超音速气流低温固相装置上实现;(2)用超音速气流法低温固相合成两种金属有机框架、聚酰亚胺以及聚2,5-二甲氧基苯胺聚合物,并采用傅里叶红外光谱(FT-IR),粉末X射线衍射(XRD),差热分析(DTA),场发射扫描电镜(SEM),紫外吸收光谱(UV-vis),热分析(TG-DSC)以及循环伏安对合成目标化合物的结构和性能进行表征,证明目标产物的成功合成及合理应用;(3)为探究该装置的反应机理,研究不同压力、反应时间、颗粒度大小对合成反应的影响,采用非原位粉末X射线衍射跟踪监测反应过程,将检测结果转化成转化率(α),建立动力学数学模型,筛选出最佳动力学模型,探究反应的机理。
[Abstract]:As an important part of green chemistry, solid-state reaction has attracted wide attention. As a branch of solid-state chemical synthesis, mechanochemical synthesis has attracted more and more attention. Traditional mechanochemical synthesis methods mainly include ball milling and grinding. Double helix extrusion method, high pressure method and microwave assistant method have some disadvantages, such as low reaction energy, high economic cost, long reaction time, no continuous cycle and difficulty in industrial production. In this paper, the supersonic airflow low temperature solid phase synthesis is proposed. The energy transfer in the low temperature solid state reaction synthesis is realized by the hypersonic airflow acceleration and collision technology, which makes full use of the principles of hydrodynamics and kinetic reaction. This method has the advantages of continuous cycle, high efficiency, high speed, simple operation and friendly environment. The main contents of this paper include the improvement of the low temperature solid state reaction device of supersonic airflow and the synthesis of different skeleton polymers by using the low temperature solid phase method of supersonic airflow. To explore the reaction system of supersonic airflow low temperature solid-state synthesis, and to explore the influence of different experimental conditions on the experiment, to explore the mechanism and to establish a kinetic mathematical model. The deficiency of supersonic airflow low-temperature solid-state reaction device is found continuously. The improvement scheme is put forward, and the equipment is continuously improved to increase the energy utilization rate and reaction rate. Two kinds of metal-organic frames, polyimide and poly2-dimethoxyaniline were synthesized by supersonic flow method at low temperature. The structure and properties of the synthesized target compounds were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), differential thermal analysis (DTAA), field emission scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV), TG-DSCC and cyclic voltammetry. It is proved that the successful synthesis of the target product and its rational application are used to investigate the reaction mechanism of the device, and to study the effects of different pressure, reaction time and particle size on the synthetic reaction. Non-in-situ powder X-ray diffraction is used to monitor the reaction process. The test results were transformed into conversion rate (伪), the kinetic mathematical model was established, the best kinetic model was screened out, and the mechanism of the reaction was explored.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O631
【参考文献】
相关期刊论文 前8条
1 康勇;;超音速低温旋流分离器拉瓦尔喷管流场数值分析[J];西北大学学报(自然科学版);2011年04期
2 袁邦群;彭汝芳;金波;李鸿波;楚士晋;;超音速气流条件下芳香醛和丙二酸亚异丙酯的无溶剂缩合反应[J];中国粉体技术;2009年06期
3 蔡艳华;彭汝芳;马冬梅;楚士晋;左金;;超音速气流低热固相反应合成对硝基苯甲醛缩对氨基苯甲酸Schiff碱[J];化学工程;2009年03期
4 蔡艳华;彭汝芳;马冬梅;楚士晋;左金;;超音速气流固相反应合成对二甲胺基苯甲醛缩对氨基苯甲酸Schiff碱[J];石油化工;2008年07期
5 蔡艳华;彭汝芳;马冬梅;楚士晋;左金;;超细碳酸钙热分解动力学研究[J];化工科技;2008年02期
6 唐新村,黄伯云,贺跃辉,贾殿赠;低热固相反应的反应机理研究(Ⅰ)——冷融熔机理和冷溶熔机理的模型[J];无机化学学报;2004年07期
7 杨祖华,阎逢元,王金清,王刚,王鸿灵;几种共聚型聚酰亚胺薄膜的摩擦学性能研究[J];材料保护;2004年02期
8 周益明,忻新泉;低热固相合成化学[J];无机化学学报;1999年03期
,本文编号:1690431
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1690431.html