氮掺杂石墨烯量子点在荧光和电致化学发光传感器方面的应用研究
发布时间:2018-04-10 04:26
本文选题:氮掺杂石墨烯量子点 切入点:纳米传感器 出处:《吉林大学》2017年硕士论文
【摘要】:近年来,由于独特的电学光学性质,以碳为基础的发光纳米材料得到了广泛的研究。石墨烯量子点,做为一种新型碳纳米材料,具有好的光学稳定性、丰富的表面修饰、大的比表面积、低毒、高的生物相容性、以及独特的电子跃迁能力等特点。将氮原子引入到石墨烯量子点可以提高量子产率,改变能带间隙,改善电学、化学、光学性质,扩大其在荧光传感器以及电化学传感器方面的应用范围。本论文主要阐述了基于氮掺杂的石墨烯量子点,Na2SO3、苦味酸荧光传感器的构建,新型硝基苯胺电致化学发光传感器的研究,以及大肠杆菌O157:H7表面印迹膜电致化学传感器的制备与应用。主要包括以下五个部分:在论文第一章中,我们主要介绍了石墨烯量子点的制备方法和光学性质,以及氮掺杂石墨烯量子点的发展应用等方面的内容,并对本论文的研究意义和主要工作进行了阐述。在第二章中,我们在氮掺杂的石墨烯量子点的基础上构建了荧光纳米探针对Na2SO3进行了检测。由于Fe~(3+)对氮掺杂的石墨烯量子点猝灭性较好,选择性较高,我们利用Fe~(3+)和SO_3~(2-)之间的氧化还原反应构建了荧光信号先下降后上升的检测机制。实现了水中Na2SO3的灵敏性检测。在第三章中,我们在二氧化硅片上自组装了肌苷修饰的氮掺杂石墨烯量子点-壳聚糖固相膜,构建了苦味酸纳米传感器。肌苷-苦味酸之间的“Jaffé”反应使得固相膜能够选择性的吸附苦味酸,量子点-苦味酸之间的电子转移使得固相膜的荧光信号有明显的下降。通过荧光信号的变化我们对苦味酸进行定量检测。在第四章中,基于石墨烯量子点和壳聚糖,我们构建了一个电致化学发光传感器对硝基苯胺进行了检测。氮掺杂的石墨烯量子点能够催化硝基苯胺发生重氮反应。因此,当硝基苯胺加入到含有无机酸和亚硝酸钠的电解液中时,重氮反应发生,产生重氮自由基。重氮自由基可以使修饰在电极表面的石墨烯量子点的电致化学发光信号增强。通过体系发光信号的变化可以实现硝基苯胺的检测。在第五章中,我们利用电聚合的方法在玻碳电极表面制备大肠杆菌O157:H7聚多巴胺表面印迹聚合膜,由于表面印迹膜的尺寸、形状和大肠杆菌O157:H7的互补性,表面印迹膜可以选择性的结合大肠杆菌O157:H7。同时,在大肠杆菌多抗上标记氮掺杂的石墨烯量子点,利用大肠杆菌O157:H7和多抗之间的特异性结合可以将氮掺杂的石墨烯量子点连接到玻碳电极表面,从而通过检测量子点的电致化学发光信号对大肠杆菌O157:H7进行定量检测。
[Abstract]:In recent years, carbon-based luminescent nanomaterials have been widely studied due to their unique electrical and optical properties.As a new type of carbon nanomaterials, graphene quantum dots are characterized by good optical stability, rich surface modification, large specific surface area, low toxicity, high biocompatibility and unique electronic transition ability.The introduction of nitrogen atom into graphene quantum dots can improve the quantum yield, change the energy band gap, improve the electrical, chemical and optical properties, and expand its application in fluorescent sensors and electrochemical sensors.In this paper, the construction of nitrogen-doped graphene quantum dot Na _ 2SO _ 3, the construction of picric acid fluorescence sensor and the study of a new type of nitrophenylamine electrochemiluminescence sensor are discussed.And the preparation and application of electrochemical sensor based on O157:H7 surface imprinted membrane of Escherichia coli.In the first chapter, we mainly introduce the preparation methods and optical properties of graphene quantum dots, and the development and application of nitrogen-doped graphene quantum dots.The significance and main work of this paper are expounded.In the second chapter, we construct fluorescent nanoprobes based on nitrogen-doped graphene quantum dots to detect Na2SO3.Due to the better quenching and selectivity of nitrogen-doped graphene quantum dots (Fe~(3), the mechanism of fluorescence signal first decreasing and then rising was constructed by using the redox reaction between Fe~(3) and so _ 3H _ 2).The sensitivity detection of Na2SO3 in water is realized.In the third chapter, we self-assembled nitrogen-doped graphene quantum dot-chitosan solid phase membrane on silica wafer, and constructed picric acid nanosensor.The "Jaff 茅" reaction between inosine and picric acid makes the solid phase membrane selectively adsorb picric acid, and the electron transfer between quantum dot-picric acid makes the fluorescence signal of solid phase membrane decrease obviously.The quantitative detection of picric acid was carried out by the change of fluorescence signal.In chapter 4, based on graphene quantum dots and chitosan, we constructed an electrochemiluminescence sensor for the detection of nitroaniline.Nitrogen doped graphene quantum dots can catalyze the diazo reaction of nitroaniline.Therefore, when nitroaniline was added to the electrolyte containing inorganic acid and sodium nitrite, diazo reaction occurred and diazo free radical was produced.Diazo radicals can enhance the electrochemiluminescence signal of graphene quantum dots modified on the electrode surface.The detection of nitrophenylamine can be realized by changing the luminescence signal of the system.In chapter 5, we prepared the surface imprinted polymeric membrane of Escherichia coli (O157:H7) polydopamine on the surface of glassy carbon electrode by electropolymerization. Because of the size and shape of the surface imprinted film and the complementarity of E. coli O157:H7.The surface imprinted membrane can selectively bind Escherichia coli O157: H7.At the same time, the nitrogen-doped graphene quantum dots were labeled on Escherichia coli polyclonal antibodies, and the nitrogen-doped graphene quantum dots could be connected to the glassy carbon electrode surface by the specific binding between E. coli O157:H7 and polyantibodies.The O157:H7 of Escherichia coli was detected quantitatively by detecting the electrochemiluminescence signals of quantum dots.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O657.3
【相似文献】
相关期刊论文 前10条
1 吴峰;蔡继业;;基于量子点的荧光共振能量转移的应用[J];化学与生物工程;2007年01期
2 季雷华;高素莲;张斌;;量子点的合成、毒理学及其应用[J];环境化学;2008年05期
3 王富;刘春艳;;发光碳量子点的合成及应用[J];影像科学与光化学;2011年04期
4 伊魁宇;王猛;邵明云;;量子点作为离子探针的分析应用[J];广州化工;2012年11期
5 罗慧;李曦;方婷婷;刘鹏;;量子点的毒性研究进展[J];材料导报;2013年19期
6 田瑞雪;武玲玲;赵清;胡胜亮;杨金龙;;碳量子点的氨基化及其对发光性能的影响[J];化工新型材料;2014年01期
7 ;“量子点”晶体将推动部分物理工艺的进步[J];光机电信息;2002年10期
8 徐万帮;汪勇先;许荣辉;尹端l,
本文编号:1729676
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1729676.html
教材专著