近红外光谱法检测鸡、鱼肉加热终点温度
发布时间:2018-04-13 09:16
本文选题:鸡肉 + 鱼肉 ; 参考:《中国农业科学》2016年01期
【摘要】:【目的】在肉制品生产中,加热终点温度(endpoint temperature,EPT)是控制食源性疾病的关键因素。现有的EPT检测方法诸多,如酶活性测定法,凝血试验和聚丙烯酰胺凝胶电泳(SDS-PAGE电泳)法等,但普遍存在耗时、样品处理繁杂等不足。采用近红外光谱(near-infrared spectroscopy,NIR)结合偏最小二乘法(partial least squares,PLS)检测鸡、鱼肉加热终点温度,为研究近红外光谱法检测肉类EPT的可行性提供参考。【方法】分别将肉样以1℃·min~(-1)的升温速率进行9个不同温度的加热处理(50、55、60、65、70、75、80、85和90℃),当达到终点温度时,迅速取出,冰水冷却到4℃。冷却后的肉样和释放的肉汁同时放到均质机中,均质1 min,绞碎成肉糜状。均质后的肉样存放于4℃的冰箱中,共制得144个样品(鸡、鱼肉样品数分别为77和67)。在近红外光谱仪上,采用硫化铅(Pb S)检测器和旋转样品池,每个样品连续采集光谱3次,在11 000—4 000 cm-1波数范围内,以8 cm~(-1)的分辨率扫描64次。将所采集的鸡、鱼肉的光谱数据分别随机分为校正集(样品总数108,其中鸡肉样58,鱼肉样50)和检验集(样品总数36,其中鸡肉样19,鱼肉样17),校正集用于校正模型的建立,检验集用于检验模型的预测能力。在建立模型时,采用标准正则变换、一阶微分和Norris Derivative滤波平滑(N-D)3种方法结合对原始光谱进行处理,采用内部交叉验证均方差(cross-validation mean square error,RMSECV)确定主成分数,利用模型对检验集样品的预测均方差(prediction mean square error,RMSEP)、预测值与实测值间的相关系数r及预测标准差σ考察模型的预测性能。【结果】采用校正集的内部交叉验证均方差(RMSECV)确定鸡肉、鱼肉的主成分数分别为9和11,此时校正集的RMSECV值最小,分别为1.59%和0.96%;所得校正模型的预测温度与实际加热温度之间的相关系数分别为0.9844和0.9936;由所建模型对检验集样品的检验结果可看出,实际加热温度与近红外模型预测的加热温度具有很高的相关性,预测值的相关系数r分别为0.9966和0.9832;预测均方差RMSEP分别为3.02%和2.94%;预测标准差σ为0.97和1.63。【结论】本研究所建模型具有很好的预测性能,近红外光谱用于肉制品EPT检测具有很大潜力。
[Abstract]:Objective: in meat production, endpoint temperature is the key factor to control foodborne diseases.There are a lot of existing EPT detection methods, such as enzyme activity assay, coagulation test and polyacrylamide gel electrophoresis (SDS-PAGE) method, but there are many shortcomings such as time-consuming and complicated sample processing.Using near-infrared spectroscopy (NIR) and partial least squares (PLS) to detect the end point temperature of fish heating.The ice water cooled to 4 鈩,
本文编号:1743861
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1743861.html
教材专著