新型钴基硒化物电极材料的制备及催化释氢性能研究
本文选题:过渡金属硒化物 + 电/光电催化制氢 ; 参考:《浙江大学》2017年博士论文
【摘要】:随着能源危机,环境污染等问题的日益突出,人类社会对以氢能为代表的清洁能源的需求越来越迫切,水分解制氢作为理想的获取氢能的方法成为研究的热点。由于水分解产氢反应(Hydrogen Evolution Reaction,HER)是一个耗能的上坡反应,实际外加电压往往要高于理论值。电催化和光电催化作为两种重要的水分解制氢的方式,其核心问题是如何实现电能和太阳能向化学能的高效转化。研究表明,在电极表面负载产氢催化剂改善反应动力学是提升反应速率的关键,但是目前在电催化和光电催化分解水体系以Pt等为代表的贵金属催化剂由于成本等问题不适宜于水分解制氢的大规模应用。钴基硒化物由于具有适宜的结合氢原子的能力,且价格低廉,储量丰富,被认为是理想的Pt释氢催化剂替代材料。但如何实现钴基硒化物的简便合成、晶相调控以及如何与半导体材料耦合仍面临很大挑战。本论文通过创新催化材料的制备方法制备了高效的钴基硒化物,并系统探究不同工艺条件下钴基硒化物的形成机理、物相组成、微观形貌。针对目前过渡金属化合物电催化释氢材料制备工艺复杂的问题,我们提出一种简便的气相反应方法,即在Se蒸气的氛围里,使钴基无机盐直接转化为黄铁矿型CoSe_2晶体。进一步地,针对块状晶体催化活性位点少,催化能力差等问题,提出通过设计混晶结构来提高晶体材料催化活性的研究思路;首先利用电沉积合成CoSex,然后通过改变煅烧温度实现CoSe_2晶体结构从斜方晶型(o-CoSe_2)到立方晶型(c-CoSe_2)的调控,首次合成了由(c-CoSe_2)和(o-CoSe_2)组成的混晶CoSe_2(-CoSe_2)。混晶结构中不同晶型晶体界面处的原子的周期性排列发生剧烈变化,原子具有更高的自由度,由此产生的晶面缺陷进一步提高了 CoSe_2晶体的电催化活性,其释氢Tafel斜率为30mV/decade(与Pt相同),而且具有优异稳定性。在光电催化体系中,实现催化剂与半导体的有效耦合非常困难,特别是对以硅为基底的光电阴极,由于硅基底与催化剂界面相容性差、催化剂阻碍硅基对光的吸收等问题,大多数晶体电催化材料不能直接应用于光电催化体系。此外,常规催化剂负载工艺会在硅表面引入缺陷,影响光电转化效率。针对上述问题,为了构建高效半导体-催化剂体系,我们有针对性地设计出电催化性能优异(Tafe1~39 mV/decade)且透光性良好的三元钴基无定形薄膜(NiCoSex)。利用温和的光辅助-电沉积的方法,以吸光性能良好的三维硅纳米柱阵列(p-SiNP)为基底,构建了具有“核-壳”结构的p-Si/NiCoSexNP异质结复合电极,100 mW/cm2的模拟太阳光条件下,释氢光电流为-37.5 mA/cm2,是目前以p-Si为基底的光电阴极电流的最高值。本论文以制备高效的水分解释氢催化材料为目标,系统研究了不同钴基硒化物结构与催化析氢性能的构效关系;构建了“半导体-催化剂”高效光电催化体系,实现了光生电子的有效收集和利用。本论文将为设计其它具有类似结构的催化材料提供有益的借鉴,并为Si基半导体析氢材料走向工业化提供新材料和新思路。
[Abstract]:As the energy crisis, environmental pollution and other problems become increasingly prominent, the demand for clean energy represented by hydrogen energy is becoming more and more urgent in human society. Water decomposition and hydrogen production as an ideal method for obtaining hydrogen energy has become a hot spot. Because of the water decomposition hydrogen production (Hydrogen Evolution Reaction, HER) is a energy consuming upslope reaction, practical The applied voltage is often higher than the theoretical value. Electrocatalysis and photoelectrocatalysis are two important ways of water decomposition and hydrogen production. The core problem is how to realize the efficient conversion of electric energy and solar energy to chemical energy. The precious metal catalysts, such as Pt and so on, are not suitable for the large-scale application of hydrogen production. The cobalt based selenide is considered to be a substitute for the Pt hydrogen release catalyst because it has the ability to combine the hydrogen atom with the suitable hydrogen atom, and is considered to be the substitute for the hydrogen release catalyst. The simple synthesis of cobalt based selenide, the regulation of crystal phase and how to coupling with semiconductor materials are still facing great challenges. In this paper, a highly efficient cobalt based selenide is prepared by the preparation of innovative catalytic materials. The formation mechanism, phase composition and Micromorphology of cobalt based selenide under different technological conditions are systematically explored. A complex process for the preparation of electrocatalytic hydrogen release materials for metal compounds, we have proposed a simple method of gas phase reaction, that is, the cobalt based inorganic salts are converted directly into pyrite type CoSe_2 crystals in the atmosphere of Se vapor. The structure is used to improve the catalytic activity of crystal materials. First, CoSex is synthesized by electrodeposition, and then the CoSe_2 crystal structure is regulated from o-CoSe_2 to cubic (c-CoSe_2) by changing the calcination temperature. The mixed crystal CoSe_2 (-CoSe_2) composed of (c-CoSe_2) and (o-CoSe_2) is synthesized for the first time. The different crystal structure in the mixed crystal structure is synthesized. The periodic arrangement of atoms at the interface of the type crystal occurs violently, and the atom has a higher degree of freedom. The resulting crystal surface defects further improve the electrocatalytic activity of the CoSe_2 crystal. The Tafel slope of the hydrogen release is 30mV/decade (the same as that of Pt), and has excellent stability. In the photoelectrocatalysis system, the catalyst and the semi conductance are realized. The effective coupling of the body is very difficult, especially for the silicon based photocathode. Because the compatibility of the silicon substrate and the catalyst interface is poor, the catalyst hinders the absorption of the silicon base to the light, most of the crystal electrocatalysis materials can not be directly applied to the photoelectrocatalysis system. In addition, the conventional catalyst loading process will introduce defects on the silicon surface. In order to build an efficient semiconductor catalyst system, we have designed a three element cobalt based amorphous film (NiCoSex) with excellent electrocatalytic performance (Tafe1 ~ 39 mV/decade) and good transmittance in order to construct an efficient semiconductor catalyst system. A p-Si/NiCoSexNP heterojunction composite electrode with a "nuclear shell" structure is constructed on the base of p-SiNP, which is the highest value of the photocurrent current on the base of p-Si under the simulated solar light condition of 100 mW/cm2, which is the highest value of the photocurrent current on the basis of p-Si. The structure-activity relationship between the structure of different cobalt based selenides and the catalytic hydrogen evolution performance was studied. The efficient photoelectric catalysis system of "semiconductor catalyst" was constructed, and the effective collection and utilization of photogenerated electrons were realized. This paper will provide useful reference for the design of other similar structure catalytic materials and walk for the Si based semiconductor hydrogen evolution material. Provide new materials and new ideas for industrialization.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O643.36;TQ116.2
【相似文献】
相关期刊论文 前10条
1 林寨伟;花文廷;;有机硒化物的反应及其在天然产物合成中的应用[J];化学通报;1989年06期
2 杨祥良,王芹,陶云海,姚澍,徐辉碧;一种合成二硒化钠和有机二硒化物的新方法[J];无机化学学报;2001年06期
3 郄文娟;周蕾;黄海英;彭云鹏;;硒化物药用研究进展[J];微量元素与健康研究;2013年03期
4 黄奕清;某些无机硒化物的用途[J];有色冶炼;1986年06期
5 刘兴芝;赵昌明;陈林;于桂英;臧树良;;三元多硒化物的微波溶剂热合成及其结构[J];中国有色金属学报;2006年10期
6 邝光荣,黎星术,郑玉才,陈炼红,李春华,谢如刚,游劲松;硒酵母制备中添加不同硒化物对酵母中硒含量的影响[J];西南民族学院学报(自然科学版);1998年03期
7 李龙泉,张国辉,李亚栋;硒化物和碲化物纳米粉组分的测定[J];中国科学技术大学学报;1999年06期
8 龚晓钟,欧阳政;硒化黄芪多糖制备条件及其结构的研究[J];天然产物研究与开发;1998年02期
9 郑时龙,,陶虎,胥佩菱;有机锗倍半硒化物的合成[J];合成化学;1995年04期
10 金康雨;李宣镐;;一个新的K/Pd/Se体系中四金属硒化物的合成与结构表征(英文)[J];吉林师范大学学报(自然科学版);2009年03期
相关会议论文 前1条
1 张明建;郭国聪;;Ln_6Se_(11.25)(Ln=Gd、Dy)的合成和非线性[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年
相关博士学位论文 前1条
1 张红秀;新型钴基硒化物电极材料的制备及催化释氢性能研究[D];浙江大学;2017年
相关硕士学位论文 前10条
1 白玉玲;铜基硫硒化物薄膜太阳能电池吸收层材料的制备[D];电子科技大学;2015年
2 章建飞;基于单质硒活化制备金属硒化物半导体纳米材料的方法学研究[D];电子科技大学;2014年
3 王高云;基于硒化物层状材料的湿法刻蚀和光电特性研究[D];电子科技大学;2015年
4 王丽阳;纳米硒化物及其复合材料的制备与光、电催化性能研究[D];黑龙江大学;2016年
5 郭凯璐;镍钴基硒化物的制备及其超级电容性能研究[D];中原工学院;2017年
6 赵京凤;钴、镍硒化物的溶剂热合成及其性质研究[D];安徽大学;2013年
7 吴丹梅;溶剂热法制备纳米硫化物、硒化物及相关材料的摩擦学性能研究[D];青岛科技大学;2006年
8 赵培光;硒化蔗糖的合成表征及生物活性研究[D];华中师范大学;2011年
9 文青瑶;铜锌锡硫光吸收薄膜钠掺杂及硒化对其光电性能影响的研究[D];西北师范大学;2015年
10 刘鹭;硒化乳酸菌胞外多糖免疫功能机制研究[D];宁波大学;2014年
本文编号:1775051
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1775051.html