豆类的红外光谱分析与元素含量测定研究
本文选题:豆类 + 傅里叶变换红外光谱 ; 参考:《云南师范大学》2016年硕士论文
【摘要】:我国豆类资源丰富,品种多样,产地各异,对豆类的鉴别分类、以及成分、微量元素分析,有助于豆类的营养价值、食疗作用的深入研究。本文利用傅里叶红外光谱(FTIR)、二维相关红外光谱(2D-IR)、电感耦合等离子质谱(ICP-MS)结合化学计量学对不同品种不同产地的豆类(菜豆族大豆属的黄豆和黑豆,野豌豆族野豌豆属的蚕豆和豌豆,菜豆族菜豆属的白芸豆、奶花芸豆、黑芸豆、雀蛋豆、紫花芸豆和红豆,菜豆族豇豆属的红小豆和绿豆)进行研究。红外光谱结果显示,豆类的红外光谱图大体相似,主要由蛋白质、脂类和碳水化合物的吸收峰组成。二阶导数谱在1800~800 cm-1范围内有较大的差异,利用SPSS软件对该范围的光谱图进行相关分析、主成分分析(PCA)、系统聚类分析(HCA),相关系数在0.846到0.967之间,PCA分类正确率为97.1%,HCA正确率达97.2%;主成分分析结果、聚类分析的结果与相关分析结果相吻合。对1700~1600 cm-1范围的原始光谱进行曲线拟合处理,酰胺Ⅰ带拟合出了9个子峰,不同豆类子峰面积比有差异,说明不同品种豆的蛋白质的二级结构含量不同。以温度为扰动获得的二维相关红外光谱图结果显示在860~1250 cm-1、1400~1700 cm-1范围内自动峰的位置、个数和强度存在明显差别。ICP-MS测试结果显示,豆类中含有P、Zn、Fe、Mn、Mg、Ca、Cu、Na、K等多种矿质元素,其中P、Mg、K的含量较高,K元素含量是9种元素中最高的。大豆属中的矿质元素与野豌豆属、菜豆属和豇豆属的矿质元素相比较丰富;3种常量元素(P、Mg、K)间的相关性明显比6种微量元素(Zn、Fe、Mn、Ca、Cu、Na)间关系密切。研究结果表明,FTIR、2D-IR、ICP-MS为豆类的营养成分研究、深入加工提供了信息参考。
[Abstract]:China is rich in legume resources, variety and origin. The identification and classification of legumes, as well as the analysis of components and trace elements, are helpful for the further study of nutritional value and therapeutic effect of legumes. In this paper, Fourier transform infrared spectroscopy (FTIR), two-dimensional correlation infrared spectroscopy (2D-IRN), inductively coupled plasma mass spectrometry (ICP-MS) and chemometrics were used to study the effects of chemical metrology on soybean (Soybean and black bean) from different varieties and different habitats. The study was carried out on broad bean and pea of wild pea genus, white kidney bean, milkflower kidney bean, black kidney bean, sparrow egg bean, purple kidney bean and red bean, red bean and mung bean of cowpea genus. The infrared spectra showed that the infrared spectra of legumes were similar and consisted of the absorption peaks of protein, lipids and carbohydrates. The second derivative spectrum is quite different in the range of 1800 ~ 800 cm-1. The correlation analysis of the spectrum in this range is carried out by using SPSS software. The correlation coefficient is between 0.846 and 0.967, and the correct rate of PCA classification is 97.1and 97.2.The results of principal component analysis and cluster analysis agree well with the results of correlation analysis. The original spectra of 1 700 ~ 1 600 cm-1 were fitted by curve fitting. Nine sub-peaks were fitted with amide I band, and the area ratio of different beans was different, which indicated that the secondary structure content of protein was different in different varieties of beans. The results of two-dimensional correlation infrared spectroscopy obtained by temperature perturbation show that the position of the automatic peak is in the range of 860,1250cm-1n 1400N 1700 cm-1, and the number and intensity of the peaks are obviously different. The results of ICP-MS test show that there are many mineral elements, such as PznznZnFeFeMnMg-Mg-Ca-CuCuNK and so on, in the beans. The content of Mg-K is the highest among 9 elements. The correlation between the mineral elements of the genus Soybean and the mineral elements of the genus Wild pea, the genus of vegetable bean and the genus cowpea is more abundant than that of the six trace elements (Zn-FeFeMn-Ca-Cu-Na). The results showed that FTIRI 2D-IRP-MS could provide information reference for the study of nutritional components and further processing of legumes.
【学位授予单位】:云南师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TS214;O657.33
【参考文献】
相关期刊论文 前10条
1 舒翔;杨轲;吐尔洪·哈斯木;;ICP-MS测定鹰嘴豆中的微量金属元素[J];新疆农垦科技;2015年07期
2 郭兆萍;王彩萍;赵吉平;侯小峰;郭鹏燕;成玉红;;试论红小豆的经济价值及产业化开发利用[J];农业科技通讯;2015年07期
3 Isao Noda;;Recent developments in two-dimensional (2D) correlation spectroscopy[J];Chinese Chemical Letters;2015年02期
4 杜娟;彭惜媛;马芳;陈建波;周群;金哲雄;孙素琴;;黑豆和牵牛子红外光谱的分析与鉴定[J];光谱学与光谱分析;2014年09期
5 时有明;李栋玉;刘刚;易时来;;FTIR研究南方锈病侵染对玉米叶片中蛋白质和碳水化合物的影响[J];光子学报;2014年09期
6 王明智;;傅立叶红外光谱仪(FTIR)的基本原理及其应用[J];科技风;2014年06期
7 蔡琳雅;李友杰;刘慧;梁媛;张欢;白晗;巩江;倪士峰;;豌豆营养价值探析[J];宁夏农林科技;2013年07期
8 孟祥丽;张丽芬;张文杰;叶倩倩;;傅立叶变换红外光谱的应用[J];生物技术世界;2013年07期
9 安然;;黑豆的功效与作用[J];健康向导;2013年03期
10 钱贵明;刘嘉;张引;樊虹霞;赵国华;;傅立叶变换中红外光谱在食品快速分析与检测中应用[J];粮食与油脂;2013年06期
相关会议论文 前1条
1 李慰;;微量元素分析方法的研究[A];第二届泰山微量元素高级论坛汇编[C];2008年
相关硕士学位论文 前1条
1 陈建波;二维相关红外光谱差异分析方法及其应用研究[D];清华大学;2010年
,本文编号:1780424
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1780424.html