纳米氧化钌及其与氮掺杂碳纳米管复合材料的制备与性能研究
发布时间:2018-04-25 16:59
本文选题:纳米氧化钌 + 反应沉淀 ; 参考:《北京化工大学》2017年硕士论文
【摘要】:随着化石能源的开采,其枯竭不可避免,同时,由于化石能源在使用过程中产生有害气体和二氧化碳,危害了全球生态。因而,开发更清洁的可再生能源迫在眉睫。氢燃料具有无污染、效率高以及来源广等一系列优点而被广泛关注,是替代化石燃料的最佳选择。电解水是提供氢燃料的主要来源,然而,由于其阴极发生的析氧反应(OER)需要很高的过电势,使得反应需要很高的能量,需要采用催化剂。纳米氧化钌由于具有很高的OER催化性能而被广泛关注,且通过与碳纳米材料的高效复合,可使纳米氧化钌具有更好的导电性,从而实现更好的催化性能。鉴于此,论文采用反应沉淀法制备纳米氧化钌粉体和分散体,以及纳米氧化钌-氮掺杂碳纳米管复合材料,进一步对纳米氧化钌-氮掺杂碳纳米管复合材料在电解水析氧反应的催化性能进行研究。主要研究内容和结果如下:1、采用超重力反应沉淀法结合水热制备纳米氧化钌粉体。重点考察了溶液pH、水热温度、旋转床转速以及进料流量等工艺参数对纳米氧化钌颗粒尺寸、形貌和分散性等的影响规律,确定了较佳工艺条件:溶液pH为9~10,陈化时间3~5 h,水热温度160℃,水热时间12 h,旋转床转速800 rpm,进料流量300 mL·in-1。所得纳米氧化钌粉体颗粒平均尺寸1.4 nm,颗粒呈球形,为金红石晶型结构,结合水含量为0.57个,比表面积为208 m2·g-1。2、采用反应沉淀法结合表面改性制备纳米氧化钌分散体。考察了改性剂质量添加比、改性pH、水醇比以及陈化温度等各个工艺条件对分散体分散性的影响,得到较优工艺条件:改性剂质量添加比为30%,改性pH为1,分散液的水醇比为1:2。所得纳米氧化钌分散体颗粒平均尺寸为1.2 nm,颗粒形貌为球形,其分散稳定性较好,放置12个月不发生沉降。3、采用反应沉淀法结合煅烧原位负载制备纳米氧化钌-氮掺杂碳纳米管复合材料。考察了添加比、煅烧温度以及煅烧时间等工艺条件对复合材料复合效果、氧化钌颗粒尺寸以及其OER催化性能的影响,得到较佳工艺条件:三氯化钌与氮掺杂碳纳米管添加比为1:2,锻烧温度300 ℃,椴烧时间24 h。所得纳米氧化钌-氮掺杂碳纳米管复合材料复合较好,负载的纳米氧化钌平均尺寸为2.4 nm。其起始过电位为179 mV,在电流密度为10 mA·cm-1时过电位为303 mV,具有较高的OER催化性能。
[Abstract]:With the exploitation of fossil energy, it is inevitable to dry up. At the same time, because of the harmful gas and carbon dioxide produced in the process of using fossil energy, it endangers the global ecology. Therefore, the development of cleaner renewable energy is imminent. Hydrogen fuel is the best alternative to fossil fuels because it has a series of advantages such as non-pollution, high efficiency and a wide range of sources. Electrolytic water is the main source of hydrogen fuel. However, because the oxygen evolution reaction occurred at its cathode requires a high overpotential, the reaction needs a high energy and needs a catalyst. Ruthenium oxide nanocrystalline has been widely concerned because of its high catalytic performance of OER, and can achieve better catalytic performance by highly effective compounding with carbon nanomaterials. In view of this, the nanometer Ru _ 2O _ 3 powder and dispersion were prepared by reactive precipitation method, and the nano-Ru _ 2O _ 3-N doped carbon nanotube composites were prepared. The catalytic properties of ruthenium oxide-nitrogen-doped carbon nanotube composites for oxygen evolution in electrolytic water were further studied. The main contents and results are as follows: 1. Nanocrystalline ruthenium oxide powders were prepared by high gravity reactive precipitation combined with hydrothermal method. The effects of solution pH, hydrothermal temperature, rotating speed of rotating bed and feed flow rate on the size, morphology and dispersion of Ruthenium oxide nanoparticles were investigated. The optimum technological conditions were determined as follows: solution pH 9 ~ 10, aging time 3 ~ 5 h, hydrothermal temperature 160 鈩,
本文编号:1802186
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1802186.html
教材专著