当前位置:主页 > 科技论文 > 化学论文 >

ZnO基复合电极材料的制备与电化学性能研究

发布时间:2018-04-29 02:22

  本文选题:超级电容器 + 氧化锌 ; 参考:《东华大学》2016年硕士论文


【摘要】:超级电容器作为一种新型的绿色储能器件,具有高功率密度,长循环寿命,快充放电速率以及环境友好等显著优点,逐渐成为下一代能源装置中最具潜力的存储设备。根据电荷储存机制分类,超级电容器大致可以分为双电层电容器和赝电容器。其中,碳材料属于双电层电容,主要是通过电极/电解液界面发生的可逆静电离子吸附来存储电荷。而过渡金属氧化物和导电聚合物则属于赝电容,主要利用电极材料表面发生的快速可逆法拉第氧化还原反应来存储电荷。目前,赝电容超级电容器的研究对象主要是过渡金属氧化物,主要因为其丰度高,价格低廉等特点;由于不同的过渡金属氧化物有着各异的微观结构和组分,在作为电极材料时,电极/电解液界面性质和离子传输速率也各不相同,因此电荷存储能力表现出本质的差异。最近,几种电化学活性材料组合后的多组分复合材料由于协同效应的作用表现出优异的电化学性能。在这篇硕士学位论文中,我们针对过渡金属氧化物和氢氧化物电极材料的缺点,设计并合成了两种Zn O基复合电极材料,对其电化学性能作了充分研究和讨论。主要研究内容如下:(1)通过简单的水热法和化学浴沉积法在泡沫镍集流体上制备了Zn O@Co Ni(OH)2复合电极材料。电化学测试结果表明,Zn O@Co Ni(OH)2复合电极材料在2 m A/cm2电流密度下面积和质量比电容分别达到0.87 F/cm2和1081 F/g,优于原始的Co(OH)2电极材料(108 F/g)和Ni(OH)2(578 F/g)电极材料。而且具有优异的速率比电容,即使电流密度增大到30 m A/cm2,比电容仍能保持原始的64%。同时,Zn O@Co Ni(OH)2复合电极材料具有良好的循环稳定性(3000圈后比电容保持率为85.7%)。(2)通过简单的水热法和溶剂热法在泡沫镍集流体上制备了Zn O@V2O5复合电极材料。研究了第二步溶剂热过程中不同的三异丙醇氧钒单体浓度和反应温度对杂化结构材料形貌的影响,结合电化学性能测试结果得到了反应温度和三异丙醇氧钒单体浓度最优化方案(100 ul,130℃,10 h)。电化学测试结果表明,Zn O@V2O5电极材料在5 m V/s的扫描速率下质量比电容为152 F/g,而且Zn O@V2O5电极材料经过2000圈循环稳定性测试后的电容保持率为93.6%。
[Abstract]:As a new type of green energy storage devices, supercapacitors have many advantages such as high power density, long cycle life, fast charge / discharge rate and environmental friendliness. They have become the most potential storage devices in the next generation energy devices. Supercapacitors can be classified into double layer capacitors and pseudo-capacitors according to charge storage mechanism. Among them, carbon material belongs to double layer capacitance, mainly through reversible electrostatic ion adsorption at the electrode / electrolyte interface to store charge. Transition metal oxides and conductive polymers are pseudo-capacitors, which mainly store charge by fast reversible Faraday redox reaction on the surface of electrode materials. At present, the research object of pseudo-capacitor supercapacitors is mainly transition metal oxides, mainly because of their high abundance and low price, because different transition metal oxides have different microstructure and composition. As an electrode material, the interface properties and ion transport rates of the electrode / electrolyte are different, so the charge storage capacity is essentially different. Recently, the multicomponent composites with several kinds of electrochemical active materials show excellent electrochemical performance due to synergistic effect. In this master's degree thesis, we have designed and synthesized two kinds of Zn-O based composite electrode materials aiming at the shortcomings of transition metal oxide and hydroxide electrode materials. The electrochemical properties of these materials have been fully studied and discussed. The main research contents are as follows: (1) Zn O@Co Ni(OH)2 composite electrode materials were prepared on nickel foam by simple hydrothermal method and chemical bath deposition method. The electrochemical test results show that the area and mass specific capacitance of Zn O@Co Ni(OH)2 composite electrode material are 0.87 F/cm2 and 1081 F / g at 2 m A/cm2 current density respectively, which is superior to that of the original Co(OH)2 electrode material (108F / g) and Ni(OH)2(578 F / g electrode material. Moreover, it has excellent rate specific capacitance, even if the current density increases to 30 Ma / cm ~ 2, the specific capacitance can still keep the original 64%. At the same time, the Zn O@Co Ni(OH)2 composite electrode material has good cycle stability and the specific capacitance retention rate is 85.7 after 3000 cycles. The Zn O@V2O5 composite electrode material was prepared by simple hydrothermal method and solvothermal method on the nickel foam collector. The effects of different concentration of vanadium triisopropanol monomer and reaction temperature on the morphology of hybrid materials during the second step solvothermal process were studied. The optimum reaction temperature and concentration of vanadium triisopropanol at 130 鈩,

本文编号:1817960

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/1817960.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4d3c0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com