细菌纤维素基柔性复合电极材料的制备与性能研究
发布时间:2018-05-05 02:09
本文选题:细菌纤维素 + 聚吡咯 ; 参考:《武汉纺织大学》2017年硕士论文
【摘要】:细菌纤维素(BC)是一种引人关注的、对环境友好的天然纳米纤维材料,主要是由细菌通过D-葡萄糖生产的。细菌纤维素是由一系列连续的宽度为50-80nm、厚度为3-8nm纳米纤维组成的三维多孔微型网状结构的带状物。细菌纤维素具有高纯度、高结晶度、高吸水性、优秀的机械稳定性和良好的生物亲和性等性能,其含量丰富的羟基可以通过较强的相互作用,将不同纳米结构物质(如无机和导电聚合物纳米粒子或纳米线)轻松地吸附。导电高分子(CPs)具有轻质、柔性、良好的导电性和高比容量,过渡金属氧化物/金属硫化物具有高比容量和良好的氧化还原可逆性能,已经被广泛地应用于柔性赝电容器。本论文利用细菌纤维素膜为模板,通过沉积聚吡咯和金属氧化物/硫化物在细菌纤维素上,得到柔性和高电导率的聚吡咯/金属化合物/细菌纤维素复合电极材料。主要研究内容如下:(1)利用BC膜为基底,沉积硫化镍(Ni S),并通过原位聚合的方法将聚吡咯(PPy)负载到BC上得到柔性电极材料,实验测试结果表明:当吡咯浓度为1mol/L,Fe Cl3溶液浓度为0.5mol/L时,制备的PPy/Ni S/BC柔性电极材料电导率可达5.1S/cm。在电流密度为0.8m A/cm~2时,柔性电极材料的比容量、能量密度和功率密度分别为713F/g、239.0Wh/kg和39.5W/kg。随着电流密度从0.2增大到1.6m A/cm~2对应的比容量从884减小到569F/g。Ni S的加入提高了材料的比容量,但该材料循环稳定性较差,300次循环后比容量仅保留了25%。(2)利用BC膜为基底,硫化钴(Co S)为模板,通过原位聚合的方法将PPy沉积到BC上得到柔性电极材料,实验测试结果表明:Co S的加入明显地提高了以BC为基材的电容器的比容量和循环稳定性。在电流密度为0.8m A/cm~2(0.70A/g)时,柔性电极材料的比容量614F/g,经过300次循环后,比容量相对于初始比容量依然维持62.4%。PPy/Co S/BC柔性超级电容器在功率密度为663W/kg下能量密度为54.5Wh/kg。(3)利用BC膜为基底,硫化铜(CuS)为模板,通过原位聚合的方法将PPy沉积到BC上得到PPy/CuS/BC柔性电极材料,实验测试结果表明:CuS的加入明显地提高了以BC膜为基材的电容器的比容量和循环稳定性。在电流密度为0.8m A/cm~2时,柔性电极材料的比容量580F/g,经过300次循环后比容量相对于初始比容量依然维持72%,但是PPy/BC经过300次充放电后比容量只维持了21.7%。(4)利用BC膜为基底,氧化铜(Cu O)为模板,通过原位聚合的方法将PPy沉积到BC上得到柔性电极材料,实验测试结果表明:当吡咯浓度为1mol/L,Fe Cl3溶液浓度为0.5mol/L,乙酸铜溶液的质量分数为1wt%时,制备的PPy/Cu O/BC柔性电极材料电导率可达7.4S/cm。在电流密度为0.8m A/cm~2时,柔性电极材料的比容量、能量密度和功率密度分别为601F/g、48.2Wh/kg和85.8W/kg。经过300次充放电后,比容量依然含有385F/g。Cu O纳米粒子的加入证实提高了材料的比容量,经过300次充放电后比容量保留了64.1%。
[Abstract]:Bacterial cellulose (BC) is an attractive, environmentally friendly natural nanofiber material, mainly produced by bacteria via D-glucose. Bacterial cellulose is a series of three-dimensional porous microreticular structures composed of a series of continuous widths of 50-80 nm and thickness of 3-8nm nanofibers. Bacterial cellulose has high purity, high crystallinity, high water absorption, excellent mechanical stability and good biological affinity. Different nanostructured substances (such as inorganic and conductive polymer nanoparticles or nanowires) are easily adsorbed. Conductive polymer (CPs) has been widely used in flexible pseudo-capacitors due to its advantages of light weight, flexibility, good conductivity and high specific capacity. Transition metal oxides / metal sulfides have high specific capacity and good redox reversibility. In this paper, a flexible and highly conductivity polypyrrole / metal compound / bacterial cellulose composite electrode material was obtained by depositing polypyrrole and metal oxide / sulfide on bacterial cellulose as template. The main contents of this study are as follows: (1) the nickel sulphide Ni / Ni / Si was deposited on BC substrate, and polypyrrole pyrrolidine (PPyN) was loaded on BC by in situ polymerization to obtain flexible electrode material. The experimental results show that when the concentration of pyrrole is 1 mol / L Cl3 solution concentration is 0.5mol/L, the conductivity of the prepared PPy/Ni S/BC flexible electrode material can reach 5.1 s / cm. When the current density is 0.8 Ma / cm ~ 2, the specific capacity, energy density and power density of the flexible electrode materials are 713F / g / g 239.0 / kg and 39.5 W / kg respectively. With the increase of current density from 0. 2 to 1. 6 m A/cm~2, the specific capacity of the material decreases from 884 to 569F/g.Ni S, but the specific capacity of the material after 300 cycles with poor cycle stability is only 25%. 2) the BC film is used as the substrate, and the specific capacity of the material increases with the increase of the current density from 0. 2 to 1. 6 m. The flexible electrode materials were prepared by in-situ polymerization of PPy onto BC by cobalt sulfide Co S as template. The experimental results show that the specific capacity and cycle stability of capacitors based on BC have been improved obviously by adding w Co S. When the current density is 0.8 Ma / cm ~ 2 / 0.70 A / g, the specific capacity of the flexible electrode material is 614 F / g. After 300 cycles, the specific capacity of the 62.4%.PPy/Co S/BC flexible supercapacitor is maintained at a power density of 54.5 Whkg.m3 at the power density of 663W/kg, and the specific capacity of the flexible supercapacitor is maintained by using the BC film as the substrate, relative to the initial specific capacity. PPy was deposited on BC by in-situ polymerization of copper sulfide (CuS) as template. The experimental results show that the addition of% CuS can obviously improve the specific capacity and cyclic stability of capacitors based on BC film. When the current density is 0.8 Ma / cm ~ 2, the specific capacity of the flexible electrode material is 580F / g. After 300 cycles, the specific capacity of the flexible electrode material remains 72g relative to the initial specific capacity, but after 300 charges and discharges, the specific capacity of the PPy/BC is only maintained at 21.77.4.) the BC film is used as the substrate. The flexible electrode material was prepared by in-situ polymerization of PPy onto BC by in-situ polymerization. The experimental results show that when the concentration of pyrrole is 0.5 mol / L, the concentration of copper acetate solution is 1 wt%, when the concentration of pyrrole is 0.5 mol / L, the concentration of copper acetate solution is 1 wt%. The conductivity of the prepared PPy/Cu O/BC flexible electrode material can reach 7.4 S / cm. When the current density is 0.8 Ma / cm ~ 2, the specific capacity, energy density and power density of the flexible electrode materials are 601F / g / kg and 85.8 W / kg, respectively. After 300 times of charge and discharge, the specific capacity still contains 385F/g.Cu O nanoparticles. It is proved that the specific capacity of the material is increased. After 300 times of charge and discharge, the specific capacity remains 64.1%.
【学位授予单位】:武汉纺织大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O636.11;TM53
【参考文献】
相关期刊论文 前1条
1 Yidan Gao;Yaoyao Zhang;Yong Zhang;Lijing Xie;Xiaoming Li;Fangyuan Su;Xianxian Wei;Zhiwei Xu;Chengmeng Chen;Rong Cai;;Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode[J];Journal of Energy Chemistry;2016年01期
,本文编号:1845705
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1845705.html
教材专著