计算机模拟不对称铀酰-Salophen配合物分子识别性能的研究
本文选题:密度泛函理论 + 不对称铀酰-salophen ; 参考:《南华大学》2016年硕士论文
【摘要】:实验中很难通过提纯得到纯净的铀酰-salophen,所以实验方法很难得到分子的一些特性参数,也很难得到铀酰-salophen与其他分子之间发生相互作用形成的复合物的一些特征参数,但是通过理论计算,可以很好地解决这个问题,理论计算可以得到铀酰-salophen及形成的复合物的红外光谱,几何构型,分子轨道,电子结构等数据参数。根据铀酰-salophen结构特征,在铀酰-salophen的一侧引入芳香基,使铀酰-salophen具有分子手性,所以本文基于理论计算,在分子水平上对铀酰-salophen、铀酰-salophen衍生物及其与其他分子形成的复合物进行研究特殊的分子结构。利用DFT的计算方法,理论上计算了三种铀酰-salophen受体与客体小分子之间的结合能力。计算结果表明,受体与客体通过铀原子(U)与氧原子(O3)的配位作用结合一起,且结合能力随着受体上取代基的增大而增大;不对称的受体的铀原子(U)与客体氧原子(O3)形成的铀氧键(U-O3)的稳定性大于相应的对称的受体与客体之间的铀氧键(U-O3)的稳定性;配位后客体小分子上的碳碳键(C=C)与碳氧键(C=O)之间的电子密度减弱。通过计算受体3与一对手性分子之间的结合能及单体与复合物的CD光谱,得出受体3对手性分子的选择性是有区别的。据上述分析不对称铀酰-salophen具有分子识别能力。关于铀酰-salophen与其他分子形成氢键的报道很少,尤其铀酰-salophen中的铀酰上的两个氧原子参与形成的氢键鲜有报道,所以我们根据铀酰-salophen分子上的原子的特点,进一步从理论模拟了不对称铀酰-salophen中C-O和U=O的氧原子与四氢吡咯之间氢键情况,所以采用上述计算方法,对铀酰-salophen与四氢吡咯及水分子之间形成的氢键进行了理论计算及分析.结果表明体系1和体系2中的氢键键长都小于2.28?,键角都在160°~178°之间,体系1中salophen的O1与四氢吡咯上的H1之间的氢键相互作用能EHB=-10.658 kJ/mol,在体系2中铀酰的O3与四氢吡咯上的H3及O1与H1之间的氢键相互作用能分别为EHB=-7.989 kJ/mol、EHB=-11.114 kJ/mol,铀酰-salophen中的C-O和U=O均可与四氢吡咯形成氢键,且C-O···H-N稳定性大于U=O···H-N.为设计基于铀配合物的分子组装及与其他分子形成氢键的实验研究提供方理论指导。
[Abstract]:It is difficult to obtain pure uranyl -salophen by purification in the experiment, so it is difficult to get some characteristic parameters of the molecule and some characteristic parameters of the complex formed by the interaction between uranyl -salophen and other molecules. However, the theoretical calculation can solve the problem well, and the theoretical calculation can be obtained. In order to obtain the infrared spectra, geometric configuration, molecular orbitals and electronic structures of uranyl -salophen and its complex, according to the structure characteristics of uranyl -salophen, the aromatic group was introduced on one side of uranyl -salophen to make uranyl -salophen molecular chirality, so based on the theoretical calculation, at the molecular level, the uranyl -salophen was on the molecular level. The specific molecular structure of uranyl -salophen derivatives and their complexes formed with other molecules is studied. The binding ability of three uranyl -salophen receptors to small molecules of the guest is calculated by DFT calculation. The results show that the receptor and the object bind to the coordination of uranium atom (U) with oxygen atom (O3). The stability of the uranium oxygen bond (U-O3) formed by the uranium atom (U) of the asymmetric receptor and the guest oxygen atom (O3) is greater than that of the corresponding symmetric receptor and guest uranium oxygen bond (U-O3), and between the carbon carbon bond (C=C) and the carbon oxygen bond (C=O) on the small molecule after the coordination. The electron density is weakened. By calculating the binding energy between the receptor 3 and a pair of chiral molecules and the CD spectra of the monomers and complexes, the selectivity of the receptor 3 is distinguished. According to the above analysis, the asymmetric uranyl -salophen has the ability to identify the molecules. The reports of the hydrogen bonds formed by uranyl -salophen and other molecules are rarely reported. The hydrogen bonds formed by two oxygen atoms in the uranyl -salophen are rarely reported. So we further theoretically simulated the hydrogen bond between the oxygen atoms of C-O and U=O in the unsymmetrical uranyl -salophen and the four hydrogen pyrrole in the asymmetric uranyl -salophen by the characteristics of the atoms on the uranyl -salophen molecule, so the above calculation method was used for uranyl -sal. The hydrogen bond formed between ophen and four hydrogen pyrrole and water molecules has been theoretically calculated and analyzed. The results show that the hydrogen bond length of the system 1 and system 2 is less than 2.28? The bond angle is between 160 and ~178 degrees. The hydrogen bond interaction between O1 and H1 on the four pyrrole in system 1 can be EHB=-10.658 kJ/mol, and the O3 of uranyl in system 2 The hydrogen bond interaction between H3 and O1 on four pyrrole can be EHB=-7.989 kJ/mol, EHB=-11.114 kJ/mol respectively. C-O and U=O in uranyl -salophen can form hydrogen bonds with four hydrogen pyrrole, and C-O. To guide the theory of the supplier.
【学位授予单位】:南华大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O641.4
【参考文献】
相关期刊论文 前8条
1 高莎;兰文波;林英武;廖力夫;聂长明;;铀酰-Salophen受体对α,β-不饱和羰基化合物及手性客体的分子识别(英文)[J];物理化学学报;2016年03期
2 聂长明;李小龙;肖云霞;罗娟;张方帅;;铀酰-Salophen与环己烯酮的作用模式[J];核科学与工程;2015年02期
3 陆遥;冯冠儒;李岩松;龙桂鲁;;真实空间的相互作用费米子体系动力学实验数字量子模拟(英文)[J];Science Bulletin;2015年02期
4 王志军;毕开西;;Gaussian09/GaussView在光谱实验教学中的应用[J];长治学院学报;2014年02期
5 苏玲;孟令鹏;郑世钧;曾艳丽;;N_2O与HX(X=F,Cl,Br)分子间作用的电子密度拓扑研究[J];计算机与应用化学;2011年02期
6 刘懿;吕海港;胡拖平;李巧玲;;用AIM理论研究水体系中K~+与水分子之间的成键[J];山东化工;2010年04期
7 ;Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes[J];Science in China(Series B:Chemistry);2009年11期
8 刘范;Mulliken集居数的基本关系[J];化学研究与应用;1990年02期
,本文编号:1865032
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1865032.html