负载型镍基纳米复合电极材料的合成、表征及应用
发布时间:2018-05-09 09:10
本文选题:负载型镍基纳米片 + 简易合成 ; 参考:《浙江大学》2017年硕士论文
【摘要】:纳米材料由于其结构的特殊性而表现出独特的物理化学性质,作为电极材料在电化学领域比如传感器、光电催化等方面展现出巨大的应用潜力,但是目前以贵金属电催化剂为代表的纳米材料由于成本等问题极大地限制其大规模应用。镍基纳米材料由于价格低廉、储量丰富、催化性能优异等优点成为理想的替代材料。但如何实现负载型镍基纳米结构催化剂简易负载,以及如何构建高效催化剂-半导体光电催化体系仍然具有很大挑战。因此,针对目前负载型镍基纳米结构催化剂合成过程繁琐、形貌难以控制以及界面相容性差等问题,本文系统研究了负载型镍基纳米片催化剂的一步法制备工艺,并详细探究了复合电极材料结构与电/光电催化性能之间的关系。本文为理性设计、合成类似负载型纳米结构复合电极提供了重要思路和借鉴。主要内容如下:1.通过一步表面活性剂模板法制备了垂直于石墨片(GD)基底电极生长的NiO纳米片(s-NiO)阵列,并探究了其在无酶电化学葡萄糖传感器中应用。研究表明该复合电极所呈现的三维多孔纳米片阵列结构能够提供较多的催化活性位点和较大的电极-电解质界面接触面积,有效地提高了复合电极对葡萄糖的催化氧化性能:灵敏度高、检测范围宽、选择性和稳定性好。此外,进一步研究发现该三维多孔纳米片阵列结构能够提供足够开放的空间,有利于氧气泡的顺利释放,这对于复合电极的稳定性至关重要。2.采用简单的化学浴沉积法制备了 NiO/TiO2纳米阵列复合光阳极,并将其应用于光电化学葡萄糖传感器。研究表明:NiO纳米片薄层一方面可以有效地促进TiO2光电极表面光生载流子的快速转移;另一方面能够实现葡萄糖高效催化氧化。NiO/TiO2复合光阳极展现出优异的光电催化氧化葡萄糖性能,能够实现低偏压下对低浓度葡萄糖含量的定量检测,而且表现出极好的选择性和良好的稳定性。3.采用温和的电沉积法成功地制备了 NiFe(OH)x/BiVO4核-壳纳米结构复合光阳极,并探究了其光电催化分解水性能。研究表明NiFe(OH)x二维纳米片具有优异的电催化性能,能够有效地加速光阳极表面水氧化反应动力学,促进BiVO4光阳极表面空穴的利用,从而显著增强复合光阳极光电催化分解水性能。
[Abstract]:Nanomaterials exhibit unique physical and chemical properties due to their structural particularity. As electrode materials, nanomaterials have shown great potential for application in electrochemical fields such as sensors, photocatalysis and so on. However, nanomaterials, represented by noble metal electrocatalysts, have greatly limited their large-scale application due to cost problems. Nickel-based nanomaterials have become an ideal substitute because of their low price, abundant reserves and excellent catalytic performance. However, how to realize the simple support of supported nickel based nanostructured catalysts and how to construct a highly efficient catalyst-semiconductor photocatalytic system still have great challenges. Therefore, in view of the complex synthesis process, difficult morphology control and poor interfacial compatibility of supported nickel based nanostructured catalysts, the one-step preparation process of supported nickel based nanocrystalline catalysts was systematically studied in this paper. The relationship between the structure of composite electrode materials and the electrochemical / photocatalytic properties was investigated in detail. This paper provides an important idea and reference for rational design and synthesis of nanostructured composite electrodes similar to load. The main content is as follows: 1. The NiO nanocrystalline nio arrays perpendicular to graphite substrate electrodes were prepared by a one-step surfactant template method and their applications in enzymatic electrochemical glucose sensors were investigated. The results show that the three-dimensional porous nanochip array structure of the composite electrode can provide more catalytic active sites and larger contact area between electrode and electrolyte interface. The catalytic oxidation performance of the composite electrode for glucose was improved effectively: high sensitivity, wide detection range, good selectivity and stability. In addition, it is found that the three-dimensional porous nanochip array structure can provide enough open space for the smooth release of oxygen bubble, which is very important for the stability of composite electrode. The composite photoanode of NiO/TiO2 nanoarray was prepared by simple chemical bath deposition method and applied to photoelectric chemical glucose sensor. The results show that on the one hand, the thin layer of w / nio nanochip can effectively promote the fast transfer of photogenerated carriers on the surface of TiO2 photoelectrode. On the other hand, it can realize high efficiency catalytic oxidation of glucose. Nio / TiO2 composite photoanode exhibits excellent photocatalytic oxidation of glucose, and can realize quantitative detection of low concentration of glucose at low bias voltage. And showed excellent selectivity and good stability. The NiFe(OH)x/BiVO4 core-shell nanostructure photoanode was successfully prepared by mild electrodeposition, and its photocatalytic properties of water decomposition were investigated. The results show that NiFe(OH)x nanoparticles have excellent electrocatalytic performance, which can accelerate the kinetics of photoanode surface water oxidation, promote the utilization of holes in BiVO4 photoanode surface, and enhance the photocatalytic performance of composite photoanode for water decomposition.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ426;O646
【参考文献】
相关期刊论文 前3条
1 孙兵;艾仕云;;光电化学传感器的构建及应用[J];化学进展;2014年05期
2 王光丽;徐静娟;陈洪渊;;光电化学传感器的研究进展[J];中国科学(B辑:化学);2009年11期
3 彭芳;朱德荣;司士辉;肖辉;;光电化学型半导体生物传感器[J];化学进展;2008年04期
,本文编号:1865425
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1865425.html
教材专著