硒化铜纳米颗粒催化化学发光及其在生化分析中的应用
本文选题:硒化铜 + 化学发光 ; 参考:《西南大学》2017年硕士论文
【摘要】:近年来,由于具有优越的催化活性、生物相容性、易自组装等特质,金属纳米材料、非金属纳米材料、半导体纳米材料均广泛被引入发光体系中,将其成功用于生物分析中。这些研究在改进分析方法灵敏度、缩短分析时间等方面取得了重要进展。过去,化学发光的研究领域主要局限于分子、离子等体系。近年来,随着纳米科技的飞速发展,纳米材料参与的液相化学发光反应受到广泛关注。本论文介绍了常见的化学发光体系,并综述了纳米材料参与的化学发光体系及其在分析化学中的应用。实验室发现半导体纳米粒子硒化铜纳米能够作为催化剂增强液相鲁米诺过氧化氢体系的化学发光信号,然而目前已经报道的普遍应用的纳米粒子主要集中在贵金属纳米粒子如纳米金、银等,关于硒化铜催化化学发光的研究报道极少。因此本论文将硒化铜纳米粒子应用在液相化学发光体系中,研究了硒化铜纳米粒子对鲁米诺化学发光体系的催化作用,进一步讨论了催化化学发光的机理并将其应用于生物分子的检测中,结果表明分析的灵敏度得到进一步的提高,同时拓宽分析方法的线性范围。具体的研究内容包括以下三个方面:(1)建立一种以硒化铜催化化学发光检测胆固醇的新方法。胆固醇在胆固醇氧化酶的作用下生成过氧化氢,过氧化氢在硒化铜纳米粒子存在的条件下和鲁米诺发生化学发应,产生较强的化学发光信号,化学发光的信号强弱与胆固醇的浓度呈正相关的关系。基于此,开发了一种借助于硒化铜催化效果的简单快速检测胆固醇的方法,并将该化学发光体系用于人体尿液中胆固醇含量的检测。(2)建立一种通过调节硒化铜催化化学发光检测溶菌酶的新方法。在合成硒化铜的基础上,通过调节反应条件,探索了一种更快速的合成具有表面负电荷的硒化铜的方法。通过实验发现,该硒化铜纳米粒子也具有优良的催化化学发光的性质,在暗室中发现其能催化鲁米诺-过氧化氢体系发出长时间的可视化化学发光。由于纳米粒表面带有负电荷,溶菌酶在其等电点以下带正电荷,两者通过静电作用力相互作用,影响其聚集状态及催化活性,不同浓度溶菌酶的加入和化学发光信号猝灭程度有正相关关系,从而建立了溶菌酶免标、灵敏、快速的检测方法。该研究不仅建立了一种检测溶菌酶的新方法,扩宽了金属氧族化合物纳米材料在分析检测方面的应用。(3)合成了金包被硒化铜的纳米复合物,具有化学发光活性。硒化铜不易修饰,本论文将金纳米包被在硒化铜的表面,从而便于化学发光物质鲁米诺通过Au-N键耦合在复合纳米粒子表面。通过实验证明了该复合纳米粒子的成功合成,成功探索设计了一种简单、快速的合成具有化学发光活性硒化铜-金-鲁米诺花状复合物的新方法,通过紫外、电子扫描显微镜等手段证明了该复合物的成功合成,该复合物具有良好的化学发光活性,有望将其应用于复杂生物体内活性氧的检测。通过以上研究,本文建立了基于硒化铜作为催化剂的简单、快速、灵敏的检测新方法,探究具有高的化学发光效率的新体系,拓展了化学发光理论和应用研究范围,为化学发光和纳米材料的基础研究以及化学发光在分析检测应用方面提供一些新方法和新思路。
[Abstract]:In recent years, metal nanomaterials, non-metallic nanomaterials and semiconductor nanomaterials have been widely introduced into the luminescent system because of their superior catalytic activity, biocompatibility and easy self-assembly, and they have been successfully applied to biological analysis. These studies have been important in improving the sensitivity of analytical methods and reducing the time of analysis. In the past, the research field of chemiluminescence is mainly limited to molecules, ions and other systems. In recent years, with the rapid development of nanotechnology, the liquid phase chemiluminescence reaction of nanomaterials has attracted wide attention. This paper introduces the common chemiluminescence system, and summarizes the chemiluminescence system and its analysis in the analysis of nanomaterials. The laboratory found that the semiconductor nanoparticles can be used as the chemiluminescence signal of the catalyst enhanced liquid phase Lumino hydrogen peroxide system. However, the widely used nanoparticles are mainly concentrated in the noble metal nanoparticles, such as nano gold, silver, etc., on the catalytic chemiluminescence of copper selenide. The research reports are very few. Therefore, the copper selenide nanoparticles were used in the liquid chemiluminescence system, and the catalytic effect of copper selenide nanoparticles on the Lumino chemiluminescence system was studied. The mechanism of the catalytic chemiluminescence was further discussed and applied to the detection of biomolecules. The results showed that the sensitivity of the analysis was obtained. The following three aspects include: (1) a new method for the detection of cholesterol with copper selenide catalyzed chemiluminescence is established. The formation of hydrogen peroxide under the action of cholesterol oxidase in the presence of copper selenide, and the presence of copper selenide nanoparticles and Lu rice A chemical luminescence signal is produced and a strong chemiluminescence signal is produced. The signal intensity of chemiluminescence is positively related to the concentration of cholesterol. Based on this, a simple and rapid method for detecting cholesterol with the help of copper selenide catalysis is developed, and the chemiluminescent system is used for the detection of cholesterol content in human urine. (2) A new method for the detection of lysozyme by catalytic chemiluminescence of copper selenide was established. On the basis of the synthesis of copper selenide, a more rapid method for synthesis of copper selenide with negative surface charge was explored by adjusting the reaction conditions. It was found that the copper selenide nanoparticles also had excellent catalytic chemiluminescence properties. It is found in the dark room that it can catalyze the long time visual chemiluminescence of the luminol hydrogen peroxide system. Due to the negative charge of the nanoparticles, the lysozyme has positive charge below the isoelectric point. Both of them affect the aggregation and the catalytic activity through the electrostatic force, and the addition of different concentrations of lysozyme and chemical hair. There is a positive correlation between the degree of light signal quenching and the establishment of a rapid and sensitive method for detecting lysozyme. This study not only establishes a new method for detecting lysozyme, but also broadens the application of nanomaterials in the analysis and detection of metal oxide compounds. (3) the synthesis of gold coated copper selenide nanocomposites with Chemiluminescence Copper selenide was not easy to be modified. In this paper, gold nanoparticles were coated on the surface of copper selenide, so that the chemiluminescent material, Lumino, was coupled to the surface of the composite nanoparticles through the Au-N bond. The successful synthesis of the composite nanoparticles was proved by experiments. A simple and rapid synthesis of chemiluminescent active selenium was designed and designed. A new method of copper gold luminol flower like complex has been proved by UV and electron scanning microscopy. The composite has good chemiluminescence activity and is expected to be applied to the detection of reactive oxygen in complex organisms. Through the above study, copper selenide is established as a catalyst. A new rapid and sensitive detection method is used to explore new systems with high chemiluminescence efficiency, which extends the scope of chemiluminescence theory and application, and provides some new methods and new ideas for the basic research of chemiluminescence and nanomaterials and the application of chemiluminescence in analysis and detection.
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O657.3;O643.3
【参考文献】
相关期刊论文 前8条
1 李向堂;张礼春;赵书林;;基于微流控芯片电泳化学发光检测人单个红细胞中血红蛋白的含量[J];分析测试学报;2015年03期
2 牛卫芬;吕九如;;高锰酸钾-鲁米诺化学发光体系分子印迹-后化学发光法测定奋乃静[J];分析化学;2007年02期
3 刘清慧;吕九如;冯娜;;铁氰化钾-鲁米诺体系后化学发光反应及其分析应用研究——分子印迹-后化学发光法测定双嘧达莫[J];高等学校化学学报;2006年06期
4 范顺利;张立科;魏彦林;林金明;;高效液相色谱-高锰酸钾氧化化学发光法测定水中的痕量苯二酚[J];色谱;2006年02期
5 何云华,吕九如,张红鸽,杜建修;分子印迹-化学发光分析法测定安乃近[J];高等学校化学学报;2005年04期
6 林金明;化学发光色谱柱后检测技术及其应用[J];色谱;2003年04期
7 林金明;活性氧的化学发光测定法[J];环境科学学报;2003年02期
8 林金明,屈锋,单孝全;活性氧测定的基本原理与方法[J];分析化学;2002年12期
相关博士学位论文 前2条
1 段春凤;金属纳米诱导的化学发光体系的设计及在免疫分析中的应用[D];中国科学技术大学;2009年
2 郭吉兆;贵金属纳米粒子参与的化学发光[D];中国科学技术大学;2007年
相关硕士学位论文 前2条
1 刘博;金属铂纳米催化的光泽精化学发光新体系及其应用[D];中国科学技术大学;2010年
2 白文玲;毛细管电泳化学发光联用技术在药物分析中的应用[D];广西师范大学;2006年
,本文编号:1872469
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1872469.html