高光谱技术结合特征波长筛选和支持向量机的哈密瓜成熟度判别研究
发布时间:2018-06-02 00:10
本文选题:高光谱 + 哈密瓜 ; 参考:《光谱学与光谱分析》2017年07期
【摘要】:可溶性固形物含量(SSC)和硬度是哈密瓜划分等级的重要指标,同时也是其成熟度的表征因子。因此,为满足哈密瓜自动化分级和适宜采摘,采用高光谱技术结合特征波长筛选的方法,同时对哈密瓜的可溶性固形物含量、硬度及成熟度进行了无损检测研究。对多元散射校正(MSC)处理后的光谱分别利用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)和CARS-SPA方法筛选了哈密瓜可溶性固形物和硬度的特征波长,并将原始光谱、MSC预处理后的光谱和所筛选的特征波长作为输入变量分别建立哈密瓜可溶性固形物和硬度的支持向量机(SVM)预测模型及成熟度判别模型。结果显示,MSC-CARS-SPA方法所建立的可溶性固形物和硬度SVM预测模型最优,其Rpre,RMSEP和RPD分别为0.940 4,0.402 7,2.94 1和0.825 3,35.22,1.771。同时对哈密瓜成熟度进行了判别分析,并分别建立了基于全光谱、单一的可溶性固形物或硬度特征波长和主成分分析(PCA)特征融合的哈密瓜成熟度SVM判别模型。结果显示,CARS-PCASVM模型的判别结果与全光谱SNV-SVM模型相同,其校正集和预测集判别正确率分别为95%和94%。研究表明,利用高光谱技术结合特征波长筛选方法可实现同时对哈密瓜可溶性固形物和硬度的定量预测及成熟度判别。
[Abstract]:Soluble solids content (SSCS) and hardness are important indexes for the classification of Hami melon, and they are also the characterization factors of the maturity of Hami melon. Therefore, in order to satisfy the automatic grading and suitable picking of Hami melon, the method of hyperspectral technology combined with characteristic wavelength screening was adopted, and the content of soluble solids, hardness and maturity of Hami melon were studied by nondestructive testing. The spectral characteristics of soluble solids and hardness of Hami melon were screened by continuous projection algorithm (SPAS), competitive adaptive reweighting algorithm (CARSs) and CARS-SPA method. The prediction model of soluble solids and hardness of Hami melon by support vector machine (SVM) and the maturity discriminant model were established by using the pre-treated spectrum and the selected characteristic wavelength of MSC as input variables. The results show that the SVM prediction model of soluble solids and hardness developed by MSC-CARS-SPA method is the best. Its RPD and RMS EP are 0.940 4 ~ 0.402 7 ~ 2.941 and 0.825 ~ 3 ~ 35.225.221.771respectively. At the same time, discriminant analysis of Hami melon maturity was carried out, and the SVM discriminant model of Hami melon maturity was established based on full spectrum, single soluble solids or hardness characteristic wavelength and principal component analysis (PCA). The results show that the discriminant result of CARS-PCASVM model is the same as that of full-spectrum SNV-SVM model, and the accuracy of correction set and prediction set are 95% and 94% respectively. The results showed that the quantitative prediction and maturity discrimination of soluble solids and hardness of Hami melon could be realized by using hyperspectral technique combined with characteristic wavelength screening method.
【作者单位】: 石河子大学食品学院;石河子大学机械电气工程学院;中国农业大学工学院;
【基金】:国家自然科学基金项目(61263041) 国家科技支撑项目(2015BAD19B03)资助
【分类号】:O657.3;TS255.7
【相似文献】
相关期刊论文 前10条
1 朱伟兴;江辉;陈全胜;;特征波长筛选在近红外光谱测定梨硬度中的应用[J];农业工程学报;2010年08期
2 樊书祥;黄文倩;李江波;赵春江;张保华;;LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选[J];光谱学与光谱分析;2014年08期
3 汪希伟;赵茂程;居荣华;;电可调滤光器光谱图像特征波长的提取方法[J];南京林业大学学报(自然科学版);2014年02期
4 邓雷,茹赤峰,吴奔红,朱辰祥,谢丹;真假洋酒的分光光度法快速鉴别[J];现代商检科技;1997年05期
5 刘江林;;原子吸收分光光度计的应用探讨[J];泸天化科技;2001年02期
6 张毅民;白家瑞;刘红莎;汤桂兰;胡彪;;基于近红外特征波长反射率比值法鉴别塑料[J];现代化工;2014年01期
7 金同铭;苹果中主要糖类的非破坏分析[J];食品科学;1996年02期
8 刘国海;夏荣盛;江辉;梅从立;黄永红;;一种基于SCARS策略的近红外特征波长选择方法及其应用[J];光谱学与光谱分析;2014年08期
9 屠振华;朱大洲;籍保平;孟超英;王林舸;庆兆s,
本文编号:1966351
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1966351.html
教材专著