碳基金属复合材料的制备及在电化学传感分析中的应用
本文选题:石墨烯 + 碳纳米管 ; 参考:《济南大学》2017年硕士论文
【摘要】:本论文以碳材料为基底,将金属材料修饰在碳材料基底表面,使制备的碳基金属复合材料具有碳材料比表面积大,导电性能好,机械性能强以及金属材料良好的电子传递性能,催化性能好等优点,将制备的碳基金属复合材料应用于电化学传感分析中,对食品药品进行检测。本论文的研究内容分如下几部分:(1)采取修正的Hummers方法合成了氧化石墨烯,并将氧化石墨烯通过NaBH4还原成石墨烯。利用静电作用,将聚二丙烯基二甲基氯化铵(PDDA)作用在石墨烯表面,得到PDDA功能化的薄层石墨烯。而后采用水热合成法制备具有强吸附性能的Al_2O_3,然后将纳米金还原在Al_2O_3表面,得到Al_2O_3-Au金属复合材料,最后将Al_2O_3-Au修饰在PDDA功能化石墨烯表面,获得Al_2O_3-Au/PDDA/rGO复合材料。采用扫描电镜、X-射线粉末衍射和傅里叶变换红外光谱等手段对制备的材料表征。将制备的Al_2O_3-Au/PDDA/rGO复合功能材料涂抹在玻碳电极上,构建基于PDDA功能化石墨烯负载Al_2O_3-Au的电化学传感器。对构建的电化学传感器的电化学性质进行表征,并探究了滴涂量、扫速、pH以及聚集时间等条件对传感器性能的影响。该传感器用于乙酰氨基酚的测定线性回归方程为Ip(μA)=0.3410+0.0359c(μM),R2=0.9970,检出限为6 nM(S/N=3)。可用于感冒药、镇痛药中对乙酰氨基酚高灵敏、快速检测。(2)通过缩合和π-π共轭等作用将合成的氧化石墨烯与羧基化的多壁碳纳米管复合在一起,制备三维的碳杂化材料,并用硼氢化钠作为还原剂处理,获得石墨烯-多壁碳纳米管杂化材料;随后对其进行硅烷化处理,通过Au-S键,将制备的纳米金包附的二氧化钛微球负载在碳杂化材料表面,获得rGO/MWCNTs/TiO_2-Au复合材料。采用扫描电镜、能谱、傅里叶红外、拉曼光谱以及X-射线衍射等手段对复合材料表征。并将制备的rGO/MWCNTs/TiO_2-Au复合材料修饰到玻碳电极表面,构建基于杂化碳材料负载TiO_2-Au的电化学传感器。对TiO2-Au/MWCNTs/rGO/GCE传感器的电化学性质进行表征,并探究了TiO_2-Au微球粒径、TiO_2-Au比重、滴涂量、扫速、pH以及聚集时间等条件对传感器性能的影响。在最佳实验条件下绘制工作曲线,得线性方程Ip(μA)=0.0313c(nM)+0.5533,R2=0.9972,检出限为0.34 nM(S/N=3)。可用于注射液、尿液等样品中肾上腺素高灵敏、快速检测。(3)咪唑类离子液体1-丁基-3-甲基咪唑氢溴盐与氧化石墨烯通过静电作用制备1-丁基-3-甲基咪唑功能化的氧化石墨烯,并结合羧基化的碳纳米管,制备分散性良好的GO-IL-CNT复合材料,并与纳米金溶胶混合,通过静电作用结合纳米金,获得导电性极好的GO-IL-CNT-AuNPs复合材料。采取扫描电镜、傅里叶变换红外光谱以及X-射线衍射等手段对合成的复合材料进行表征。并将合成的GO-IL-CNT-Au NPs复合材料滴涂到玻碳电极上,构建离子液体功能化的碳材料负载纳米金的电化学传感器。利用循环伏安、交流阻抗等实验技术对构建的GO-IL-CNT-AuNPs/GCE传感器的电学性质进行表征,并探究了滴涂量,扫速,pH以及聚集时间等条件对GO-IL-CNT-AuNPs/GCE传感器分析性能的影响。在最佳实验条件下绘制工作曲线,得线性方程Ip(μA)=1.0678c(nM)+2.5821,R2=0.9990,检出限为1.5 nM(S/N=3)。可进行奶瓶、矿泉水瓶等样品中残存的双酚A高灵敏、快速检测。(4)用共沉淀和自组装的技术一步合成离子液体1-丁基-3-甲基咪唑氢溴盐功能化的羧基化碳纳米管负载纳米铜复合材料。利用纳米铜可与二甲双胍发生络合作用,将合成的纳米复合材料修饰到玻碳电极表面与电化学工作站连接构建检测二甲双胍的MWCNT-IL-CuNPs/GCE传感器。用扫描电镜、傅里叶变换红外光谱以及X-射线衍射等手段对合成的各步复合材料的表面形态和功能结构详细表征,用电化学等实验技术对各个修饰电极进行了电化学性能研究,并对所构建的MWCNT-IL-CuNPs/GCE传感器进行了实验条件的优化。采用循环伏安和差分脉冲法电化学技术探究了二甲双胍在MWCNT-IL-CuNPs/GCE上的电化学响应。在最佳实验条件下检测二甲双胍,传感器MWCNT-IL-CuNPs/GCE的线性工作范围是3 nM-50μM,线性方程Ip(μA)=-1.0620c(μM)-5.4660,R2=0.9991,检出限为1.0 nM(S/N=3)。复合材料MWCNT-IL-CuNPs修饰的电极提高了检测的灵敏度,降低了检出限、获得了宽的线性范围,实现了对二甲双胍高效、快速的检测。
[Abstract]:In this paper, carbon material is used as the substrate to modify the metal material on the surface of the carbon material, so that the carbon based metal composites have the advantages of large carbon material, good electrical conductivity, strong mechanical properties, good electronic transfer properties and good catalytic performance. The carbon based metal composites are applied to the electrochemistry of carbon based metal composites. In the sensing analysis, the food and drug are detected. The research content of this paper is divided into the following parts: (1) the modified Hummers method is adopted to synthesize graphene oxide and the graphite oxide is reduced to graphene through NaBH4. Using electrostatic action, the poly two propylene two methyl ammonium chloride (PDDA) is acted on the surface of graphene, and the function of PDDA is obtained. The thin layer graphene was changed. Then the Al_2O_3 with strong adsorption properties was prepared by hydrothermal synthesis. Then the gold nanoparticles were reduced to the surface of Al_2O_3, and the Al_2O_3-Au metal composite was obtained. Finally, the Al_2O_3-Au was modified on the surface of the PDDA function fossils to obtain the Al_2O_3-Au/PDDA/rGO composite. The scanning electron microscopy and X- ray powder diffraction were used. The properties of the prepared materials were characterized by Fu Liye transform infrared spectroscopy. The prepared Al_2O_3-Au/PDDA/rGO composite functional materials were applied to the glassy carbon electrode to construct an electrochemical sensor based on the Al_2O_3-Au of the PDDA function fossil ink. The electrochemical properties of the constructed electrochemical sensors were characterized, and the coating amount and scanning speed were explored. The effect of pH and aggregation time on the performance of the sensor. The sensor is used for the linear regression equation of acetaminophen determination of Ip (mu A) =0.3410+0.0359c (mu M), R2=0.9970, the detection limit is 6 nM (S/N=3). It can be used in cold drugs and the analgesics are highly sensitive and rapid detection of acetaminophen. (2) the combination of condensation and PI - pi conjugation will be combined. A three dimensional carbon hybrid material was prepared with the carboxylation of the multi walled carbon nanotubes, and the graphene multi wall carbon nanotube hybrid material was obtained by using sodium borohydride as a reductant, and then silanylation was carried out and the nano gold coated titanium dioxide microspheres were loaded in the carbon impurity through the Au-S bond. On the surface of the material, rGO/MWCNTs/TiO_2-Au composite was obtained. The composite was characterized by scanning electron microscope, energy spectrum, Fu Liye infrared, Raman spectroscopy and X- ray diffraction. The prepared rGO/MWCNTs/TiO_2-Au composite was modified to the surface of glass carbon electrode, and the electrochemical sensor based on the hybrid carbon material loaded TiO_2-Au was constructed. The electrochemical properties of the TiO2-Au/MWCNTs/rGO/GCE sensor were characterized, and the effects of the particle size of the TiO_2-Au microspheres, the specific gravity of TiO_2-Au, the coating amount, the sweep speed, the pH and the aggregation time on the performance of the sensor were investigated. The working curves were drawn under the optimum experimental conditions, and the linear equation Ip (A) =0.0313c (nM) +0.5533, R2=0.9972, the detection limit was 0.34 nM ( S/N=3). It can be used for high sensitivity and rapid detection of epinephrine in samples such as injection, urine and other samples. (3) the imidazole ionic liquid 1- butyl -3- methylimidazolium bromide and graphene oxide are prepared by electrostatic action to prepare 1- butyl -3- methylimidazole functionalized graphene oxide, combined with carboxylation of carbon nanotubes, to prepare a good dispersible GO-IL-CNT complex The composite materials are mixed with nanoscale colloid, and the GO-IL-CNT-AuNPs composites with excellent conductivity are obtained by electrostatic interaction and gold nanoparticles. The composite materials are characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X- ray diffraction. The composite GO-IL-CNT-Au NPs composite is applied to the glassy carbon. At the end, the electrochemical sensor of nano gold loaded with ionic liquid functionalized carbon material was constructed. The electrical properties of the GO-IL-CNT-AuNPs/GCE sensor were characterized by cyclic voltammetry, AC impedance and other experimental techniques, and the analysis performance of the GO-IL-CNT-AuNPs/GCE sensor was investigated by the coating amount, sweep speed, pH and aggregation time. The working curve was drawn under the best experimental conditions. The linear equation Ip (nM) =1.0678c (nM) +2.5821, R2=0.9990, the detection limit was 1.5 nM (S/N=3). The residual bisphenol A in the bottles, mineral water bottles and other samples could be highly sensitive and rapid detection. (4) a one-step synthesis of ionic liquid 1- butyl -3- methidazolium bromide with co precipitation and self-assembly technology. A salt functionalized carboxyl carbon nanotube is loaded with nanoscale copper composite. The nano copper can be used to complexing with metformin. The synthesized nanocomposites are modified to the surface of the glass carbon electrode to connect with the electrochemical workstation to construct the MWCNT-IL-CuNPs/GCE sensor for the detection of metformin. The scanning electron microscope (SEM) and Fourier transform infrared spectroscopy are used. The surface morphology and functional structure of the composite materials are characterized in detail by means of X- ray diffraction. The electrochemical properties of each modified electrode are studied by electrochemical techniques. The experimental conditions are optimized for the MWCNT-IL-CuNPs/GCE sensor constructed by the cyclic voltammetry and differential pulse method. The electrochemical response of metformin on MWCNT-IL-CuNPs/GCE was explored. Under the best experimental conditions, the linear working range of the sensor MWCNT-IL-CuNPs/GCE was 3 nM-50 mu M, the linear equation Ip (mu A) =-1.0620c (mu M) -5.4660, R2=0.9991, the detection limit was 1 nM (S/N=3). The sensitivity of detection is increased, the detection limit is reduced, and a wide linear range is obtained, thus achieving an efficient and rapid detection of metformin.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33;O657.1
【参考文献】
相关期刊论文 前10条
1 高文惠;庞军;高林;贾英民;;高效液相色谱法同时测定食品中多种添加剂[J];中国食品学报;2014年12期
2 陈沛金;张毅;肖锋;梁通雯;沈金灿;肖陈贵;华红慧;吕行;;高效液相色谱法测定糖果、蜜饯和饮料中19种食品添加剂[J];食品安全质量检测学报;2014年11期
3 谭建兵;周亮;;高效液相色谱法同时测定酱腌菜中的3种色素[J];检验医学与临床;2013年17期
4 胡颖廉;;监管和市场:我国药品安全的现状、挑战及对策[J];中国卫生政策研究;2013年07期
5 林海丹;邹志飞;秦燕;陈毓芳;李小丽;王岚;刘中勇;;高效液相色谱法同时测定食品中18种食品添加剂[J];食品科学;2013年08期
6 周应恒;宋玉兰;严斌剑;;我国食品安全监管激励相容机制设计[J];商业研究;2013年01期
7 马晓燕;朱顺达;肖海龙;黄光荣;;液相色谱-串联质谱法测定食品中喹啉黄、酸性绿S和专利蓝V[J];中国食品学报;2012年04期
8 董娟;;近年来我国食品安全监管问题的研究综述[J];社会科学管理与评论;2011年03期
9 李秀琴;张庆合;杨总;;高效液相色谱法同时测定肉制品中的6种食品添加剂[J];色谱;2010年12期
10 王亚萍;周艳梅;马同森;朱金花;;铁氰化钾-钙黄绿素抑制化学发光法测定利福平[J];分析测试学报;2010年12期
相关重要报纸文章 前1条
1 ;社会学家:食品药品安全事件为何“扎堆”出现[N];中国医药报;2012年
,本文编号:1995806
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1995806.html