当前位置:主页 > 科技论文 > 化学论文 >

基于胺—烯反应设计合成有机硅材料及性能研究

发布时间:2018-06-16 06:24

  本文选题:胺-烯反应 + 迈克尔加成反应 ; 参考:《山东大学》2017年博士论文


【摘要】:有机硅材料是至少有一个有机基团与硅原子直接相连的一类有机合成材料,是元素有机材料中发展最快的一支。有机硅材料具有耐高低温、耐老化、耐候、电气绝缘、生理惰性等许多独特的性能,为其他有机材料所不能比拟和替代。有机硅材料的种类主要包括硅烷偶联剂、硅油、硅橡胶、硅树脂,被广泛应于航空航天、电子电气、建筑、交通、纺织、医疗卫生、日用化工等领域。目前制备和功能化有机硅材料的主要方法是硅氢加成反应,该方法存在一些无法避免的缺点,如需要贵金属催化剂的参与,增加生产成本;催化剂容易受到一些元素(如N、P、S)的影响,"中毒"失去催化活性;存在副反应,提纯步骤繁琐等。因此探索一种简单、高效的方式,用于有机硅材料的制备和功能化,具有重要的实际意义。胺-烯反应(aza-Michael reaction)是一类由胺基化合物与α,β-不饱和烯烃发生的迈克尔加成反应,其原子利用率达到100%,是原子经济性反应。一般不需要催化剂,反应条件温和,能够在室温或较为温和条件下发生反应,反应速度适中,反应产率和定向选择性高,不受其他功能基团的影响,基本无副反应发生。该反应已广泛应用于药物合成、天然产物的制备,聚合物的合成和功能化。本文主要利用胺-烯反应设计合成有机硅材料及其性能研究,探索其作为一种制备有机硅材料新途径的可行性。1、以γ-哌嗪丙基甲基二甲氧基硅烷、3-氨丙基三乙氧基硅烷与多种α,β-不饱和烯烃化合物(丙烯酸酯、甲基丙烯酸酯、丙烯酰胺、丙烯腈、马来酰亚胺)发生胺-烯反应,合成一系列功能化有机硅烷,包括含有单官能团的硅烷和含有两种相同或者不同官能团的硅烷。探索了胺类化合物和共轭烯烃的反应活性,讨论了反应特性,研究了浓度、温度、烯烃的结构对单、双加成选择性的影响,为后续利用胺-烯反应制备功能化有机硅材料提供参考依据。2、将胺-烯反应作为一种新型硫化方式制备硅橡胶。合成了高分子量聚(哌嗪丙基甲基-二甲基)硅氧烷作为基胶,低粘度聚(丙烯酰氧基丙基甲基-二甲基)硅氧烷作为交联剂,通过哌嗪基与丙烯酸酯基之间的胺-烯反应,使硅橡胶交联固化。利用固体13CNMR探索交联机理,利用无转子硫化仪研究硫化特性,探讨二段硫化温度及时间、交联剂用量、白炭黑用量、基胶分子量、基胶中哌嗪基的含量对硅橡胶力学性能的影响。该新型硫化方式不需要催化剂,避免了催化剂残留对硅橡胶造成的不良影响。硫化过程中无小分子副产物生成,硫化温度不高(120 ℃),方便实际加工生产。制备的硅橡胶具有非常优异的力学性能(拉伸强度11.43 MPa,撕裂强度30.72 kN/m),同时保持了硅橡胶的耐高低温性能、疏水性能。3、为了改善硅橡胶模量低的状况,从基胶结构设计入手,合成了高分子量聚(氨丙基甲基-二甲基)硅氧烷和聚(氨乙基氨丙基甲基-二甲基)硅氧烷作为基胶,它们可以与交联剂中的丙烯酸酯基发生二次或三次胺-烯加成反应,形成"拉簧式交联"。利用固体13CNMR和红外光谱研究交联机理,探索二段硫化温度、交联剂用量对硅橡胶力学性能的影响。与传统交联方式相比,"拉簧式交联"在提高交联密度的同时不会降低Mc,因此能够提高硅橡胶的模量,又不会降低橡胶的弹性和其他力学性能,是一种提高硅橡胶模量的有效途径。硅橡胶的100%定伸模量由聚(哌嗪丙基甲基-二甲基)硅氧烷的1.31 MPa,提高到聚(氨丙基甲基-二甲基)硅氧烷的2.18 MPa和聚(氨乙基氨丙基甲基-二甲基)硅氧烷的 2.55 MPa。4、首次通过胺-烯反应合成碱基功能化聚硅氧烷。利用腺嘌呤和胸腺嘧啶与过量的1,4-丁二醇二丙烯酸酯反应,合成含双键的腺嘌呤基和胸腺嘧啶基丙烯酸衍生物,然后与聚(哌嗪丙基甲基-二甲基)硅氧烷发生胺-烯反应,得到腺嘌呤基(A-PDMS)和胸腺嘧啶基聚硅氧烷(T-PDMS),利用核磁共振、GPC对产物结构进行表征。该方法避免了传统的硅氢加成反应中保护、脱保护过程,是一种制备含氮聚硅氧烷的便捷途径。碱基聚硅氧烷由原料的半流动状态变为固态,力学性能测试显示其具有弹性体的特征,利用变温红外分析了这种状态的改变是由于A-A、T-T之间的氢键组装作用引起的。将A-PDMS与T-PDMS混合,发现它们之间可以通过A-T的异组装作用形成超分子弹性体。由于A-T的结合作用更强,得到的异组装弹性体具有更好的力学性能,且可以通过两种碱基的含量进行细致的调节。
[Abstract]:Organosilicon material is a kind of organic synthetic material with at least one organic group connected directly with silicon atom. It is one of the fastest developing elements in the organic material. Organosilicon material has many unique properties, such as high temperature resistance, aging resistance, weathering resistance, electrical insulation, physiological inertia and so on. It can not be compared and replaced by other organic materials. The main types of materials include silane coupling agents, silicone oil, silicone rubber and silicone resin, which are widely used in aerospace, electronic and electrical, construction, transportation, textile, medical, and daily chemical industry. The main method for preparing and functionalized organosilicon materials is the addition reaction of silicon and hydrogen. This method has some unavoidable shortcomings, such as the need to be expensive. The participation of metal catalysts increases the cost of production; the catalyst is easily affected by some elements such as N, P, S, and the "poisoning" loses its catalytic activity; there is a side reaction and the purification step is tedious. Therefore, it is of great practical significance to explore a simple and efficient way for the preparation and functionalization of the organosilicon material. The amine ene reaction (aza-Michael Reaction) is a kind of Michael addition reaction of amine based compounds with alpha, beta unsaturated alkenes. The atomic utilization ratio is 100%, and it is an atomic economic reaction. Generally, no catalyst is needed, the reaction conditions are mild, the reaction can be reacted at room temperature or more mild conditions, the reaction rate is moderate, the reaction yield and selectivity are high. The reaction has been widely used in the synthesis of drugs, the preparation of natural products, the synthesis and functionalization of the polymers. This paper mainly uses the amine ene reaction to design and synthesize the organosilicon materials and their properties, and explore the feasibility of the.1 as a new way to prepare the organosilicon materials. Piperazine propyl methyl two methoxy silane, 3- ammonia propyl triethyl silane and a variety of alpha, beta unsaturated olefins (acrylate, methacrylate, acrylamide, acrylonitrile, maleimide) react with amine enes to synthesize a series of functional organosilanes, including silanes containing mono functional groups and two kinds of the same or not. The reaction activity of amine and conjugated alkenes was explored with the functional group of silane. The reaction characteristics were discussed, and the influence of the concentration, temperature, and the structure of olefin on the selectivity of single and double addition was studied. The.2 was provided for the subsequent use of amine ene reaction to prepare functional organosilicon materials, and the amine ene reaction was used as a new vulcanization method. Silicone rubber was prepared. High molecular weight polymer (piperazine propyl methyl two methyl) siloxane was used as base glue and low viscosity poly (acroxypropyl propyl methyl two methyl) siloxane as crosslinker. The silicone rubber was cured through the reaction between piperazine and acrylate, and the mechanism of crosslinking was explored by solid 13CNMR, and no rotation was used. The vulcanization apparatus was used to study the vulcanization characteristics, and the effects of two sections of vulcanization temperature and time, the amount of crosslinking agent, the amount of white carbon black, the molecular weight of base glue and the content of piperazine in the base adhesive on the mechanical properties of silicone rubber. The new vulcanization method did not need catalyst, and the adverse effect of catalyst residue on silicone rubber was avoided. No small molecules in the vulcanization process were used. The by-products are produced and the vulcanization temperature is not high (120 degrees C). The silicone rubber has excellent mechanical properties (tensile strength of 11.43 MPa, tearing strength 30.72 kN/m), and the high and low temperature resistance of silicone rubber is maintained, and the hydrophobic property is.3. In order to improve the low modulus of silicone rubber, the structure of the rubber is designed with the base glue structure design. High molecular weight poly (An Bingji methyl two methyl) siloxane and poly (aminoethyl aminopropyl methyl two methyl) siloxane are used as base adhesives. They can react with the acrylate group in the crosslinking agent two or three times, forming a "spring crosslinking". The cross linking mechanism is studied by solid 13CNMR and infrared spectroscopy, and two sections of sulfur are explored. The influence of the temperature and the amount of crosslinker on the mechanical properties of silicone rubber. Compared with the traditional crosslinking method, the "spring crosslinking" will not reduce the Mc while increasing the crosslinking density. Therefore, it can improve the modulus of the silicone rubber, and will not reduce the elastic and other mechanical properties of the rubber. It is an effective way to improve the modulus of silicone rubber. 100 The% elongation modulus is 1.31 MPa of poly (piperazine propyl methyl - two methyl) siloxane, up to 2.18 MPa of poly (An Bingji methyl - two methyl) siloxane and 2.55 MPa.4 of poly (aminoethyl aminopropyl methyl two methyl) siloxane, for the first time the synthesis of alkaline functionalized polysiloxane through amine - alkene reaction. Butylene and thymine based acrylic acid derivatives containing double bonds were synthesized by the reaction of butanediol two acrylate, and then an amine alkene reaction with poly (piperazine propyl methyl two methyl) siloxane. The adenine group (A-PDMS) and thymine based polysiloxane (T-PDMS) were obtained. The structure of the product was characterized by nuclear magnetic resonance and GPC. It is a convenient way to prepare the nitrogen containing polysiloxane in the traditional silicon hydrogen addition reaction. It is a convenient way to prepare the nitrogen containing polysiloxane. The alkali polysiloxane changes from the semi flow state of the raw material to the solid state. The mechanical properties test shows the characteristic of the elastomer. The change of this state by the variable temperature infrared analysis is due to the hydrogen bond between A-A and T-T. The assembly is caused by the combination of A-PDMS and T-PDMS to find that they can form supramolecular elastomers through the different assembly of A-T. Because of the stronger binding of A-T, the obtained hetero - assembly elastomers have better mechanical properties and can be carefully regulated by the content of two bases.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O634.41

【参考文献】

相关期刊论文 前3条

1 周军昌;任玉娟;吴奇强;王绪荣;;新型低黄变氨基硅油的制备及其应用[J];印染助剂;2009年03期

2 蔡永奎;田新祥;邢润庆;;哌嗪基硅油的应用性能[J];有机硅材料;2008年03期

3 孙效华,王文忠,冯圣玉;氯丙基聚硅氧烷的合成进展[J];有机硅材料;2002年04期

相关博士学位论文 前2条

1 董福营;基于氨基与氯丙基反应制备新型交联体系硅橡胶与性能研究[D];山东大学;2016年

2 刁\~;新型硅橡胶的制备与性能研究[D];山东大学;2011年



本文编号:2025701

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2025701.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4f31c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com